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Preface

Most books on operating systems are strong on theory and weak on practice. This one aims to
provide a better balance between the two. It covers all the fundamental principles in great detail,
including processes, interprocess communication, semaphores, monitors, message passing,
scheduling algorithms, input/output, deadlocks, device drivers, memory management, paging
algorithms, file system design, security, and protection mechanisms. But it also discusses one
particular systemmiNix 3a uNix-compatible operating system in detail, and even provides a source
code listing for study. This arrangement allows the reader not only to learn the principles, but also
to see how they are applied in a real operating system.

When the first edition of this book appeared in 1987, it caused something of a small revolution in
the way operating systems courses were taught. Until then, most courses just covered theory.
With the appearance of MINIX, many schools began to have laboratory courses in which students
examined a real operating system to see how it worked inside. We consider this trend highly
desirable and hope it continues.

It its first 10 years, MINIX underwent many changes. The original code was designed for a 256K
8088-based IBM PC with two diskette drives and no hard disk. It was also based on UNIX Version
7 As time went on, MINIX evolved in many ways: it supported 32-bit protected mode machines
with large memories and hard disks. It also changed from being based on Version 7, to being
based on the international POSIX standard (IEEE 1003.1 and ISO 9945-1). Finally, many new
features were added, perhaps too many in our view, but too few in the view of some other
people, which led to the creation of Linux. In addition, MINIX was ported to many other platforms,
including the Macintosh, Amiga, Atari, and SPARC. A second edition of the book, covering this
system, was published in 1997 and was widely used at universities.

[Page xvi]

The popularity of MINIX has continued, as can be observed by examining the number of hits for
MINIX found by Google.

This third edition of the book has many changes throughout. Nearly all of the material on
principles has been revised, and considerable new material has been added. However, the main
change is the discussion of the new version of the system, called MINIX 3. and the inclusion of the
new code in this book. Although loosely based on MINIX 2, MINIX 3 is fundamentally different in
many key ways.

The design of MINIX 3 was inspired by the observation that operating systems are becoming
bloated, slow, and unreliable. They crash far more often than other electronic devices such as
televisions, cell phones, and DVD players and have so many features and options that practically
nobody can understand them fully or manage them well. And of course, computer viruses,
worms, spyware, spam, and other forms of malware have become epidemic.

To a large extent, many of these problems are caused by a fundamental design flaw in current
operating systems: their lack of modularity. The entire operatng system is typically millions of
lines of C/C++ code compiled into a single massive executable program run in kernel mode. A
bug in any one of those millions of lines of code can cause the system to malfunction. Getting all
this code correct is impossible, especially when about 70% consists of device drivers, written by



third parties, and outside the purview of the people maintaining the operating system.

With MINIX 3, we demonstrate that this monolithic design is not the only possibility. The MINIX 3
kernel is only about 4000 lines of executable code, not the millions found in Windows, Linux, Mac
OSX, or FreeBSD. The rest of the system, including all the device drivers (except the clock
driver), is a collection of small, modular, user-mode processes, each of which is tightly restricted
in what it can do and with which other processes it may communicate.

While MINIX 3 is a work in progress, we believe that this model of building an operating system
as a collection of highly-encapsulated user-mode processes holds promise for building more
reliable systems in the future. MINIX 3 is especially focused on smaller PCs (such as those
commonly found in Third-World countries and on embedded systems, which are always resource
constrained). In any event, this design makes it much easier for students to learn how an
operating system works than attempting to study a huge monolithic system.

The CD-ROM that is included in this book is a live CD. You can put it in your CD-ROM drive, reboot
the computer, and MINIX 3 will give a login prompt within a few seconds. You can log in as root
and give the system a try without first having to install it on your hard disk. Of course, it can also
be installed on the hard disk. Detailed installation instructions are given in Appendix A.

[Page xvii]

As suggested above, MINIX 3 is rapidly evolving, with new versions being issued frequently. To
download the current CD-ROM image file for burning, please go to the official Website:
www.minix3.org. This site also contains a large amount of new software, documentation, and
news about MINIX 3 development. For discussions about MINIX 3, or to ask questions, there is a
USENET newsgroup: comp.os.minix. People without newsreaders can follow discussions on the
Web at http://groups.google.com/group/comp.o0s.minix.

As an alternative to installing MINIX 3 on your hard disk, it is possible to run it on any one of
several PC simulators now available. Some of these are listed on the main page of the Website.

Instructors who are using the book as the text for a university course can get the problem
solutions from their local Prentice Hall representative. The book has its own Website. It can be
found by going to www.prenhall.com/tanenbaum and selecting this title.

We have been extremely fortunate in having the help of many people during the course of this
project. First and foremost, Ben Gras and Jorrit Herder have done most of the programming of
the new version. They did a great job under tight time constraints, including responding to e-mail
well after midnight on many occasions. They also read the manuscript and made many useful
comments. Our deepest appreciation to both of them.

Kees Bot also helped greatly with previous versions, giving us a good base to work with. Kees
wrote large chunks of code for versions up to 2.0.4, repaired bugs, and answered numerous
questions. Philip Homburg wrote most of the networking code as well as helping out in numerous
other useful ways, especially providing detailed feedback on the manuscript.

People too numerous to list contributed code to the very early versions, helping to get MINIX off
the ground in the first place. There were so many of them and their contributions have been so
varied that we cannot even begin to list them all here, so the best we can do is a generic thank
you to all of them.

Several people read parts of the manuscript and made suggestions. We would like to give our
special thanks to Gojko Babic, Michael Crowley, Joseph M. Kizza, Sam Kohn Alexander Manov,
and Du Zhang for their help.


http://groups.google.com/group/comp.os.minix

Finally, we would like to thank our families. Suzanne has been through this 16 times now. Barbara
has been through it 15 times now. Marvin has been through it 14 times now. It's kind of getting
to be routine, but the love and support is still much appreciated. (AST)

Al's Barbara has been through this twice now. Her support, patience, and good humor were
essential. Gordon has been a patient listener. It is still a delight to have a son who understands
and cares about the things that fascinate me. Finally, step-grandson Zain's first birthday coincides
with the release of MINIX 3. Some day he will appreciate this. (ASW)

Andrew S. Tanenbaum

Albert S. Woodhull
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1. Introduction

Without its software, a computer is basically a useless lump of metal. With its software, a
computer can store, process, and retrieve information; play music and videos; send e-mail,
search the Internet; and engage in many other valuable activities to earn its keep. Computer
software can be divided roughly into two kinds: system programs, which manage the operation of
the computer itself, and application programs, which perform the actual work the user wants. The
most fundamental system program is the operating system, whose job is to control all the
computer's resources and provide a base upon which the application programs can be written.
Operating systems are the topic of this book. In particular, an operating system called MINIX 3 is
used as a model, to illustrate design principles and the realities of implementing a design.

A modern computer system consists of one or more processors, some main memory, disks,
printers, a keyboard, a display, network interfaces, and other input/output devices. All in all, a
complex system. Writing programs that keep track of all these components and use them
correctly, let alone optimally, is an extremely difficult job. If every programmer had to be
concerned with how disk drives work, and with all the dozens of things that could go wrong when
reading a disk block, it is unlikely that many programs could be written at all.

Many years ago it became abundantly clear that some way had to be found to shield
programmers from the complexity of the hardware. The way that has evolved gradually is to put
a layer of software on top of the bare hardware, to manage all parts of the system, and present
the user with an interface or virtual machine that is easier to understand and program. This
layer of software is the operating system.

[Page 2]

The placement of the operating system is shown in Fig. 1-1. At the bottom is the hardware,
which, in many cases, is itself composed of two or more levels (or layers). The lowest level
contains physical devices, consisting of integrated circuit chips, wires, power supplies, cathode ray
tubes, and similar physical devices. How these are constructed and how they work is the province
of the electrical engineer.

Figure 1-1. A computer system consists of hardware, system
programs, and application programs.



Next comes the microarchitecture level, in which the physical devices are grouped together to
form functional units. Typically this level contains some registers internal to the CPU (Central
Processing Unit) and a data path containing an arithmetic logic unit. In each clock cycle, one or
two operands are fetched from the registers and combined in the arithmetic logic unit (for
example, by addition or Boolean AND). The result is stored in one or more registers. On some
machines, the operation of the data path is controlled by software, called the microprogram. On
other machines, it is controlled directly by hardware circuits.

The purpose of the data path is to execute some set of instructions. Some of these can be carried
out in one data path cycle; others may require multiple data path cycles. These instructions may
use registers or other hardware facilities. Together, the hardware and instructions visible to an
assembly language programmer form the ISA (Instruction Set Architecture) This level is often
called machine language.

The machine language typically has between 50 and 300 instructions, mostly for moving data
around the machine, doing arithmetic, and comparing values. In this level, the input/output
devices are controlled by loading values into special device registers. For example, a disk can be
commanded to read by loading the values of the disk address, main memory address, byte count,
and direction (read or write) into its registers. In practice, many more parameters are needed,
and the status returned by the drive after an operation may be complex. Furthermore, for many
1/0 (Input/Output) devices, timing plays an important role in the programming.

[Page 3]

A major function of the operating system is to hide all this complexity and give the programmer a
more convenient set of instructions to work with. For example, read bl ock fromfile is
conceptually much simpler than having to worry about the details of moving disk heads, waiting
for them to settle down, and so on.

On top of the operating system is the rest of the system software. Here we find the command
interpreter (shell), window systems, compilers, editors, and similar application-independent
programs. It is important to realize that these programs are definitely not part of the operating
system, even though they are typically supplied preinstalled by the computer manufacturer, or in
a package with the operating system if it is installed after purchase. This is a crucial, but subtle,
point. The operating system is (usually) that portion of the software that runs in kernel mode or
supervisor mode. It is protected from user tampering by the hardware (ignoring for the



moment some older or low-end microprocessors that do not have hardware protection at all).
Compilers and editors run in user mode. If a user does not like a particular compiler, hel 1is
free to write his own if he so chooses; he is not free to write his own clock interrupt handler,
which is part of the operating system and is normally protected by hardware against attempts by
users to modify it.

[ 1"He" should be read as "he or she" throughout the book.

This distinction, however, is sometimes blurred in embedded systems (which may not have kernel
mode) or interpreted systems (such as Java-based systems that use interpretation, not
hardware, to separate the components). Still, for traditional computers, the operating system is
what runs in kernel mode.

That said, in many systems there are programs that run in user mode but which help the
operating system or perform privileged functions. For example, there is often a program that
allows users to change their passwords. This program is not part of the operating system and
does not run in kernel mode, but it clearly carries out a sensitive function and has to be protected
in a special way.

In some systems, including MINIX 3, this idea is carried to an extreme form, and pieces of what is
traditionally considered to be the operating system (such as the file system) run in user space. In
such systems, it is difficult to draw a clear boundary. Everything running in kernel mode is clearly
part of the operating system, but some programs running outside it are arguably also part of it,
or at least closely associated with it. For example, in MINIX 3, the file system is simply a big C
program running in user-mode.

Finally, above the system programs come the application programs. These programs are
purchased (or written by) the users to solve their particular problems, such as word processing,
spreadsheets, engineering calculations, or storing information in a database.

e prcy | nexT B
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1.1. What Is an Operating System?

Most computer users have had some experience with an operating system, but it is difficult to pin
down precisely what an operating system is. Part of the problem is that operating systems
perform two basically unrelated functions, extending the machine and managing resources, and
depending on who is doing the talking, you hear mostly about one function or the other. Let us
now look at both.

1.1.1. The Operating System as an Extended Machine

As mentioned earlier, the architecture (instruction set, memory organization, 1/0, and bus
structure) of most computers at the machine language level is primitive and awkward to program,
especially for input/output. To make this point more concrete, let us briefly look at how floppy
disk 1/0 is done using the NEC PD765 compatible controller chips used on many Intel-based
personal computers. (Throughout this book we will use the terms "floppy disk" and "diskette"
interchangeably.) The PD765 has 16 commands, each specified by loading between 1 and 9 bytes
into a device register. These commands are for reading and writing data, moving the disk arm,
and formatting tracks, as well as initializing, sensing, resetting, and recalibrating the controller
and the drives.

The most basic commands are read and wri t e, each of which requires 13 parameters, packed into
9 bytes. These parameters specify such items as the address of the disk block to be read, the
number of sectors per track, the recording mode used on the physical medium, the intersector
gap spacing, and what to do with a deleted-data-address-mark. If you do not understand this
mumbo jumbo, do not worry; that is precisely the pointit is rather esoteric. When the operation is
completed, the controller chip returns 23 status and error fields packed into 7 bytes. As if this
were not enough, the floppy disk programmer must also be constantly aware of whether the
motor is on or off. If the motor is off, it must be turned on (with a long startup delay) before data
can be read or written. The motor cannot be left on too long, however, or the floppy disk will wear
out. The programmer is thus forced to deal with the trade-off between long startup delays versus
wearing out floppy disks (and losing the data on them).

Without going into the real details, it should be clear that the average programmer probably does
not want to get too intimately involved with the programming of floppy disks (or hard disks, which
are just as complex and quite different). Instead, what the programmer wants is a simple, high-
level abstraction to deal with. In the case of disks, a typical abstraction would be that the disk
contains a collection of named files. Each file can be opened for reading or writing, then read or
written, and finally closed. Details such as whether or not recording should use modified
frequency modulation and what the current state of the motor is should not appear in the
abstraction presented to the user.

[Page 5]

The program that hides the truth about the hardware from the programmer and presents a nice,
simple view of named files that can be read and written is, of course, the operating system. Just
as the operating system shields the programmer from the disk hardware and presents a simple

file-oriented interface, it also conceals a lot of unpleasant business concerning interrupts, timers,



memory management, and other low-level features. In each case, the abstraction offered by the
operating system is simpler and easier to use than that offered by the underlying hardware.

In this view, the function of the operating system is to present the user with the equivalent of an
extended machine or virtual machine that is easier to program than the underlying hardware.
How the operating system achieves this goal is a long story, which we will study in detail
throughout this book. To summarize it in a nutshell, the operating system provides a variety of
services that programs can obtain using special instructions called system calls. We will examine
some of the more common system calls later in this chapter.

1.1.2. The Operating System as a Resource Manager

The concept of the operating system as primarily providing its users with a convenient interface is
a top-down view. An alternative, bottom-up, view holds that the operating system is there to
manage all the pieces of a complex system. Modern computers consist of processors, memories,
timers, disks, mice, network interfaces, printers, and a wide variety of other devices. In the
alternative view, the job of the operating system is to provide for an orderly and controlled
allocation of the processors, memories, and 1/0 devices among the various programs competing
for them.

Imagine what would happen if three programs running on some computer all tried to print their
output simultaneously on the same printer. The first few lines of printout might be from program
1, the next few from program 2, then some from program 3, and so forth. The result would be
chaos. The operating system can bring order to the potential chaos by buffering all the output
destined for the printer on the disk. When one program is finished, the operating system can then
copy its output from the disk file where it has been stored to the printer, while at the same time
the other program can continue generating more output, oblivious to the fact that the output is
not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and protecting the
memory, 1/0 devices, and other resources is even greater, since the users might otherwise
interfere with one another. In addition, users often need to share not only hardware, but
information (files, databases, etc.) as well. In short, this view of the operating system holds that
its primary task is to keep track of who is using which resource, to grant resource requests, to
account for usage, and to mediate conflicting requests from different programs and users.

[Page 6]

Resource management includes multiplexing (sharing) resources in two ways: in time and in
space. When a resource is time multiplexed, different programs or users take turns using it. First
one of them gets to use the resource, then another, and so on. For example, with only one CPU
and multiple programs that want to run on it, the operating system first allocates the CPU to one
program, then after it has run long enough, another one gets to use the CPU, then another, and
then eventually the first one again. Determining how the resource is time multiplexedwho goes
next and for how longis the task of the operating system. Another example of time multiplexing is
sharing the printer. When multiple print jobs are queued up for printing on a single printer, a
decision has to be made about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers taking turns, each
one gets part of the resource. For example, main memory is normally divided up among several
running programs, so each one can be resident at the same time (for example, in order to take
turns using the CPU). Assuming there is enough memory to hold multiple programs, it is more
efficient to hold several programs in memory at once rather than give one of them all of it,
especially if it only needs a small fraction of the total. Of course, this raises issues of fairness,



protection, and so on, and it is up to the operating system to solve them. Another resource that is
space multiplexed is the (hard) disk. In many systems a single disk can hold files from many
users at the same time. Allocating disk space and keeping track of who is using which disk blocks
is a typical operating system resource management task.

[ Py | NEXT
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[Page 6 (continued)]

1.2. History of Operating Systems

Operating systems have been evolving through the years. In the following sections we will briefly
look at a few of the highlights. Since operating systems have historically been closely tied to the
architecture of the computers on which they run, we will look at successive generations of
computers to see what their operating systems were like. This mapping of operating system
generations to computer generations is crude, but it does provide some structure where there
would otherwise be none.

The first true digital computer was designed by the English mathematician Charles Babbage
(17921871). Although Babbage spent most of his life and fortune trying to build his "analytical
engine,” he never got it working properly because it was purely mechanical, and the technology of
his day could not produce the required wheels, gears, and cogs to the high precision that he
needed. Needless to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need software for his analytical
engine, so he hired a young woman named Ada Lovelace, who was the daughter of the famed
British poet Lord Byron, as the world's first programmer. The programming language Ada® was
named after her.

[Page 7]

1.2.1. The First Generation (194555) Vacuum Tubes and Plugboards

After Babbage's unsuccessful efforts, little progress was made in constructing digital computers
until World War I1. Around the mid-1940s, Howard Aiken at Harvard University, John von
Neumann at the Institute for Advanced Study in Princeton, J. Presper Eckert and John Mauchley
at the University of Pennsylvania, and Konrad Zuse in Germany, among others, all succeeded in
building calculating engines. The first ones used mechanical relays but were very slow, with cycle
times measured in seconds. Relays were later replaced by vacuum tubes. These machines were
enormous, filling up entire rooms with tens of thousands of vacuum tubes, but they were still
millions of times slower than even the cheapest personal computers available today.

In these early days, a single group of people designed, built, programmed, operated, and
maintained each machine. All programming was done in absolute machine language, often by
wiring up plugboards to control the machine's basic functions. Programming languages were
unknown (even assembly language was unknown). Operating systems were unheard of. The
usual mode of operation was for the programmer to sign up for a block of time on the signup
sheet on the wall, then come down to the machine room, insert his or her plugboard into the
computer, and spend the next few hours hoping that none of the 20,000 or so vacuum tubes
would burn out during the run. Virtually all the problems were straightforward numerical
calculations, such as grinding out tables of sines, cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction of punched cards.
It was now possible to write programs on cards and read them in instead of using plugboards;
otherwise, the procedure was the same.



1.2.2. The Second Generation (195565) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radically. Computers
became reliable enough that they could be manufactured and sold to paying customers with the
expectation that they would continue to function long enough to get some useful work done. For
the first time, there was a clear separation between designers, builders, operators, programmers,
and maintenance personnel.

These machines, now called mainframes, were locked away in specially airconditioned computer
rooms, with staffs of specially-trained professional operators to run them. Only big corporations
or major government agencies or universities could afford their multimillion dollar price tags. To
run a job (i.e., a program or set of programs), a programmer would first write the program on
paper (in FORTRAN or possibly even in assembly language), then punch it on cards. He would
then bring the card deck down to the input room and hand it to one of the operators and go drink
coffee until the output was ready.

[Page 8]

When the computer finished whatever job it was currently running, an operator would go over to
the printer and tear off the output and carry it over to the output-room, so that the programmer
could collect it later. Then he would take one of the card decks that had been brought from the
input room and read it in. If the FORTRAN compiler was needed, the operator would have to get it
from a file cabinet and read it in. Much computer time was wasted while operators were walking
around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly looked for ways to
reduce the wasted time. The solution generally adopted was the batch system. The idea behind
it was to collect a tray full of jobs in the input room and then read them onto a magnetic tape
using a small (relatively) inexpensive computer, such as the IBM 1401, which was very good at
reading cards, copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the real computing.
This situation is shown in Fig. 1-2.

Figure 1-2. An early batch system. (a) Programmers bring cards to

1401. (b) 1401 reads batch of jobs onto tape. (c) Operator carries

input tape to 7094. (d) 7094 does computing. (e) Operator carries
output tape to 1401. (f) 1401 prints output.

[View full size image]




After about an hour of collecting a batch of jobs, the tape was rewound and brought into the
machine room, where it was mounted on a tape drive. The operator then loaded a special
program (the ancestor of today's operating system), which read the first job from tape and ran it.
The output was written onto a second tape, instead of being printed. After each job finished, the
operating system automatically read the next job from the tape and began running it. When the
whole batch was done, the operator removed the input and output tapes, replaced the input tape
with the next batch, and brought the output tape to a 1401 for printing off line (i.e., not
connected to the main computer).

The structure of a typical input job is shown in Fig. 1-3. It started out with a $JOB card, specifying
the maximum run time in minutes, the account number to be charged, and the programmer's
name. Then came a $FORTRAN card, telling the operating system to load the FORTRAN compiler
from the system tape. It was followed by the program to be compiled, and then a $LOAD card,
directing the operating system to load the object program just compiled. (Compiled programs
were often written on scratch tapes and had to be loaded explicitly.) Next came the $RUN card,
telling the operating system to run the program with the data following it. Finally, the $END card
marked the end of the job. These primitive control cards were the forerunners of modern job
control languages and command interpreters.
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Figure 1-3. Structure of a typical FMS job.
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Large second-generation computers were used mostly for scientific and engineering calculations,
such as solving the partial differential equations that often occur in physics and engineering. They
were largely programmed in FORTRAN and assembly language. Typical operating systems were
FMS (the Fortran Monitor System) and IBSYS, IBM's operating system for the 7094.

1.2.3. The Third Generation (19651980) ICs and Multiprogramming



By the early 1960s, most computer manufacturers had two distinct, and totally incompatible,
product lines. On the one hand there were the word-oriented, large-scale scientific computers,
such as the 7094, which were used for numerical calculations in science and engineering. On the
other hand, there were the character-oriented, commercial computers, such as the 1401, which
were widely used for tape sorting and printing by banks and insurance companies.

Developing, maintaining, and marketing two completely different product lines was an expensive
proposition for the computer manufacturers. In addition, many new computer customers initially
needed a small machine but later outgrew it and wanted a bigger machine that had the same
architectures as their current one so it could run all their old programs, but faster.
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IBM attempted to solve both of these problems at a single stroke by introducing the System/360.
The 360 was a series of software-compatible machines ranging from 1401-sized to much more
powerful than the 7094. The machines differed only in price and performance (maximum

memory, processor speed, number of 1/0 devices permitted, and so forth). Since all the machines
had the same architecture and instruction set, programs written for one machine could run on all
the others, at least in theory. Furthermore, the 360 was designed to handle both scientific (i.e.,
numerical) and commercial computing. Thus a single family of machines could satisfy the needs of
all customers. In subsequent years, IBM has come out with compatible successors to the 360 line,
using more modern technology, known as the 370, 4300, 3080, 3090, and Z series.

The 360 was the first major computer line to use (small-scale) Integrated Circuits (ICs), thus
providing a major price/performance advantage over the second-generation machines, which
were built up from individual transistors. It was an immediate success, and the idea of a family of
compatible computers was soon adopted by all the other major manufacturers. The descendants
of these machines are still in use at computer centers today. Nowadays they are often used for
managing huge databases (e.g., for airline reservation systems) or as servers for World Wide
Web sites that must process thousands of requests per second.

The greatest strength of the "one family" idea was simultaneously its greatest weakness. The
intention was that all software, including the operating system, OS/360, had to work on all
models. It had to run on small systems, which often just replaced 1401s for copying cards to
tape, and on very large systems, which often replaced 7094s for doing weather forecasting and
other heavy computing. It had to be good on systems with few peripherals and on systems with
many peripherals. It had to work in commercial environments and in scientific environments.
Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else) could write a piece of software to meet all those
conflicting requirements. The result was an enormous and extraordinarily complex operating
system, probably two to three orders of magnitude larger than FMS. It consisted of millions of
lines of assembly language written by thousands of programmers, and contained thousands upon
thousands of bugs, which necessitated a continuous stream of new releases in an attempt to
correct them. Each new release fixed some bugs and introduced new ones, so the number of bugs
probably remained constant in time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and incisive book
describing his experiences with 0S/360 (Brooks, 1995). While it would be impossible to
summarize the book here, suffice it to say that the cover shows a herd of prehistoric beasts stuck
in a tar pit. The cover of Silberschatz et al. (2004) makes a similar point about operating systems
being dinosaurs.
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Despite its enormous size and problems, OS/360 and the similar third-generation operating
systems produced by other computer manufacturers actually satisfied most of their customers
reasonably well. They also popularized several key techniques absent in second-generation
operating systems. Probably the most important of these was multiprogramming. On the 7094,
when the current job paused to wait for a tape or other 1/0 operation to complete, the CPU
simply sat idle until the 1/0 finished. With heavily CPU-bound scientific calculations, 1/0 is
infrequent, so this wasted time is not significant. With commercial data processing, the 1/0 wait
time can often be 80 or 90 percent of the total time, so something had to be done to avoid having
the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a different job in each
partition, as shown in Fig. 1-4. While one job was waiting for 1/0 to complete, another job could
be using the CPU. If enough jobs could be held in main memory at once, the CPU could be kept
busy nearly 100 percent of the time. Having multiple jobs safely in memory at once requires
special hardware to protect each job against snooping and mischief by the other ones, but the
360 and other third-generation systems were equipped with this hardware.

Figure 1-4. A multiprogramming system with three jobs in memory.

Job 3
Job 2
Memory
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Operating
system

Another major feature present in third-generation operating systems was the ability to read jobs
from cards onto the disk as soon as they were brought to the computer room. Then, whenever a
running job finished, the operating system could load a new job from the disk into the now-empty
partition and run it. This technique is called spooling (from Simultaneous Peripheral Operation
On Line) and was also used for output. With spooling, the 1401s were no longer needed, and
much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scientific calculations and
massive commercial data processing runs, they were still basically batch systems. Many
programmers pined for the first-generation days when they had the machine all to themselves for
a few hours, so they could debug their programs quickly. With third-generation systems, the time
between submitting a job and getting back the output was often hours, so a single misplaced
comma could cause a compilation to fail, and the programmer to waste half a day.

This desire for quick response time paved the way for timesharing, a variant of
multiprogramming, in which each user has an online terminal. In a timesharing system, if 20
users are logged in and 17 of them are thinking or talking or drinking coffee, the CPU can be
allocated in turn to the three jobs that want service. Since people debugging programs usually
issue short commands (e.g., compile a five-page procedurel 1) rather than long ones (e.g., sort a
million-record file), the computer can provide fast, interactive service to a number of users and
perhaps also work on big batch jobs in the background when the CPU is otherwise idle. The first
serious timesharing system, CTSS (Compatible Time Sharing System), was developed at M.I.T.
on a specially modified 7094 (Corbato et al., 1962). However, timesharing did not really become



popular until the necessary protection hardware became widespread during the third generation.

[ Twe will use the terms "procedure," "subroutine,"” and "function” interchangeably in this book.
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After the success of the CTSS system, MIT, Bell Labs, and General Electric (then a major
computer manufacturer) decided to embark on the development of a "computer utility," a
machine that would support hundreds of simultaneous timesharing users. Their model was the
electricity distribution systemwhen you need electric power, you just stick a plug in the wall, and
within reason, as much power as you need will be there. The designers of this system, known as
MULTICS (MULTiplexed Information and Computing Service), envisioned one huge machine
providing computing power for everyone in the Boston area. The idea that machines far more
powerful than their GE-645 mainframe would be sold for under a thousand dollars by the millions
only 30 years later was pure science fiction, like the idea of supersonic trans-Atlantic underse a
trains would be now.

MULTICS was a mixed success. It was designed to support hundreds of users on a machine only
slightly more powerful than an Intel 80386-based PC, although it had much more 1/0 capacity.
This is not quite as crazy as it sounds, since people knew how to write small, efficient programs in
those days, a skill that has subsequently been lost. There were many reasons that MULTICS did
not take over the world, not the least of which is that it was written in PL/I, and the PL/I compiler
was years late and barely worked at all when it finally arrived. In addition, MULTICS was
enormously ambitious for its time, much like Charles Babbage's analytical engine in the
nineteenth century.

MULTICS introduced many seminal ideas into the computer literature, but turning it into a serious
product and a commercial success was a lot harder than anyone had expected. Bell Labs dropped
out of the project, and General Electric quit the computer business altogether. However, M.1.T.
persisted and eventually got MULTICS working. It was ultimately sold as a commercial product by
the company that bought GE's computer business (Honeywell) and installed by about 80 major
companies and universities worldwide. While their numbers were small, MULTICS users were
fiercely loyal. General Motors, Ford, and the U.S. National Security Agency, for example, only shut
down their MULTICS systems in the late 1990s. The last MULTICS running, at the Canadian
Department of National Defence, shut down in October 2000. Despite its lack of commercial
success, MULTICS had a huge influence on subsequent operating systems. A great deal of
information about it exists (Corbato et al., 1972; Corbaté and Vyssotsky, 1965; Daley and
Dennis, 1968; Organick, 1972; and Saltzer, 1974). It also has a stillactive Web site,
www.multicians.org, with a great deal of information about the system, its designers, and its
users.
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The phrase "computer utility” is no longer heard, but the idea has gained new life in recent years.
In its simplest form, PCs or workstations (high-end PCs) in a business or a classroom may be
connected via a LAN (Local Area Network) to a file server on which all programs and data are
stored. An administrator then has to install and protect only one set of programs and data, and
can easily reinstall local software on a malfunctioning PC or workstation without worrying about
retrieving or preserving local data. In more heterogeneous environments, a class of software
called middleware has evolved to bridge the gap between local users and the files, programs,
and databases they use on remote servers. Middleware makes networked computers look local to
individual users' PCs or workstations and presents a consistent user interface even though there
may be a wide variety of different servers, PCs, and workstations in use. The World Wide Web is
an example. A web browser presents documents to a user in a uniform way, and a document as
seen on a user's browser can consist of text from one server and graphics from another server,



presented in a format determined by a style sheet on yet another server. Businesses and
universities commonly use a web interface to access databases and run programs on a computer
in another building or even another city. Middleware appears to be the operating system of a
distributed system, but it is not really an operating system at all, and is beyond the scope of
this book. For more on distributed systems see Tanenbaum and Van Steen (2002).

Another major development during the third generation was the phenomenal growth of
minicomputers, starting with the Digital Equipment Company (DEC) PDP-1 in 1961. The PDP-1
had only 4K of 18-bit words, but at $120,000 per machine (less than 5 percent of the price of a
7094), it sold like hotcakes. For certain kinds of nonnumerical work, it was almost as fast as the
7094 and gave birth to a whole new industry. It was quickly followed by a series of other PDPs
(unlike IBM's family, all incompatible) culminating in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS project, Ken
Thompson, subsequently found a small PDP-7 minicomputer that no one was using and set out to
write a stripped-down, one-user version of MULTICS. This work later developed into the UNIX
operating system, which became popular in the academic world, with government agencies, and
with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Because the source code was
widely available, various organizations developed their own (incompatible) versions, which led to
chaos. Two major versions developed, System V, from AT&T, and BSD, (Berkeley Software
Distribution) from the University of California at Berkeley. These had minor variants as well, now
including FreeBSD, OpenBSD, and NetBSD. To make it possible to write programs that could run
on any UNIX system, IEEE developed a standard for UNIX, called POSIX, that most versions of
UNIX now support. POSIX defines a minimal system call interface that conformant UNIX systems
must support. In fact, some other operating systems now also support the POSIX interface. The
information needed to write POSIX-compliant software is available in books (IEEE, 1990; Lewine,
1991), and online as the Open Group's "Single UNIX Specification™ at www.unix.org. Later in this
chapter, when we refer to UNIX, we mean all of these systems as well, unless stated otherwise.
While they differ internally, all of them support the POSI X standard, so to the programmer they
are quite similar.
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1.2.4. The Fourth Generation (1980Present) Personal Computers

With the development of LSI (Large Scale Integration) circuits, chips containing thousands of
transistors on a square centimeter of silicon, the age of the microprocessor-based personal
computer dawned. In terms of architecture, personal computers (initially called
microcomputers) were not all that different from minicomputers of the PDP-11 class, but in
terms of price they certainly were different. The minicomputer made it possible for a department
in a company or university to have its own computer. The microcomputer made it possible for an
individual to have his or her own computer.

There were several families of microcomputers. Intel came out with the 8080, the first general-
purpose 8-bit microprocessor, in 1974. A number of companies produced complete systems using
the 8080 (or the compatible Zilog Z80) and the CP/M (Control Program for Microcomputers)
operating system from a company called Digital Research was widely used with these. Many
application programs were written to run on CP/M, and it dominated the personal computing
world for about 5 years.

Motorola also produced an 8-bit microprocessor, the 6800. A group of Motorola engineers left to
form MOS Technology and manufacture the 6502 CPU after Motorola rejected their suggested
improvements to the 6800. The 6502 was the CPU of several early systems. One of these, the



Apple 11, became a major competitor for CP/M systems in the home and educational markets. But
CP/M was so popular that many owners of Apple Il computers purchased Z-80 coprocessor add-
on cards to run CP/M, since the 6502 CPU was not compatible with CP/M. The CP/M cards were
sold by a little company called Microsoft, which also had a market niche supplying BASIC
interpreters used by a number of microcomputers running CP/M.

The next generation of microprocessors were 16-bit systems. Intel came out with the 8086, and
in the early 1980s, IBM designed the IBM PC around Intel's 8088 (an 8086 on the inside, with an
8 bit external data path). Microsoft offered IBM a package which included Microsoft's BASIC and
an operating system, DOS (Disk Operating System) originally developed by another
companyMicrosoft bought the product and hired the original author to improve it. The revised
system was renamed MS-DOS (MicroSoft Disk Operating System) and quickly came to dominate
the IBM PC market.
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CP/M, MS-DOS, and the Apple DOS were all command-line systems: users typed commands at
the keyboard. Years earlier, Doug Engelbart at Stanford Research Institute had invented the GUI
(Graphical User Interface), pronounced "gooey," complete with windows, icons, menus, and
mouse. Apple's Steve Jobs saw the possibility of a truly user-friendly personal computer (for
users who knew nothing about computers and did not want to learn), and the Apple Macintosh
was announced in early 1984. It used Motorola's 16-bit 68000 CPU, and had 64 KB of ROM (Read
Only Memory), to support the GUI. The Macintosh has evolved over the years. Subsequent
Motorola CPUs were true 32-bit systems, and later still Apple moved to IBM PowerPC CPUs, with
RISC 32-bit (and later, 64-bit) architecture. In 2001 Apple made a major operating system
change, releasing Mac OS X, with a new version of the Macintosh GUI on top of Berkeley UNIX.
And in 2005 Apple announced that it would be switching to Intel processors.

To compete with the Macintosh, Microsoft invented Windows. Originally Windows was just a
graphical environment on top of 16-bit MS-DOS (i.e., it was more like a shell than a true
operating system). However, current versions of Windows are descendants of Windows NT, a full
32-bit system, rewritten from scratch.

The other major contender in the personal computer world is UNIX (and its various derivatives).
UNIX is strongest on workstations and other high-end computers, such as network servers. It is
especially popular on machines powered by high-performance RISC chips. On Pentium-based
computers, Linux is becoming a popular alternative to Windows for students and increasingly
many corporate users. (Throughout this book we will use the term "Pentium" to mean the entire
Pentium family, including the low-end Celeron, the high end Xeon, and compatible AMD
microprocessors).

Although many UNIX users, especially experienced programmers, prefer a command-based
interface to a GUI, nearly all UNIX systems support a windowing system called the X Window
system developed at M.1.T. This system handles the basic window management, allowing users to
create, delete, move, and resize windows using a mouse. Often a complete GUI, such as Motif, is
available to run on top of the X Window system giving UNIX a look and feel something like the
Macintosh or Microsoft Windows for those UNIX users who want such a thing.

An interesting development that began taking place during the mid-1980s is the growth of
networks of personal computers running network operating systems and distributed
operating systems (Tanenbaum and Van Steen, 2002). In a network operating system, the
users are aware of the existence of multiple computers and can log in to remote machines and
copy files from one machine to another. Each machine runs its own local operating system and
has its own local user (or users). Basically, the machines are independent of one another.
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Network operating systems are not fundamentally different from single-processor operating
systems. They obviously need a network interface controller and some low-level software to drive
it, as well as programs to achieve remote login and remote file access, but these additions do not
change the essential structure of the operating system.

A distributed operating system, in contrast, is one that appears to its users as a traditional
uniprocessor system, even though it is actually composed of multiple processors. The users
should not be aware of where their programs are being run or where their files are located; that
should all be handled automatically and efficiently by the operating system.

True distributed operating systems require more than just adding a little code to a uniprocessor
operating system, because distributed and centralized systems differ in critical ways. Distributed
systems, for example, often allow applications to run on several processors at the same time,
thus requiring more complex processor scheduling algorithms in order to optimize the amount of
parallelism.

Communication delays within the network often mean that these (and other) algorithms must run
with incomplete, outdated, or even incorrect information. This situation is radically different from
a single-processor system in which the operating system has complete information about the
system state.

1.2.5. History of MINIX 3

When UNIX was young (Version 6), the source code was widely available, under AT&T license,
and frequently studied. John Lions, of the University of New South Wales in Australia, even wrote
a little booklet describing its operation, line by line (Lions, 1996). This booklet was used (with
permission of AT&T) as a text in many university operating system courses.

When AT&T released Version 7, it dimly began to realize that UNIX was a valuable commercial
product, so it issued Version 7 with a license that prohibited the source code from being studied in
courses, in order to avoid endangering its status as a trade secret. Many universities complied by
simply dropping the study of UNIX and teaching only theory.

Unfortunately, teaching only theory leaves the student with a lopsided view of what an operating
system is really like. The theoretical topics that are usually covered in great detail in courses and
books on operating systems, such as scheduling algorithms, are in practice not really that
important. Subjects that really are important, such as 1/0 and file systems, are generally
neglected because there is little theory about them.

To remedy this situation, one of the authors of this book (Tanenbaum) decided to write a new
operating system from scratch that would be compatible with UNIX from the user's point of view,
but completely different on the inside. By not using even one line of AT&T code, this system
avoided the licensing restrictions, so it could be used for class or individual study. In this manner,
readers could dissect a real operating system to see what is inside, just as biology students
dissect frogs. It was called MINIX and was released in 1987 with its complete source code for
anyone to study or modify. The name MINIX stands for mini-UNIX because it is small enough that
even a nonguru can understand how it works.
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In addition to the advantage of eliminating the legal problems, MINIX had another advantage
over UNIX. It was written a decade after UNIX and was structured in a more modular way. For



instance, from the very first release of MINIX the file system and the memory manager were not
part of the operating system at all but ran as user programs. In the current release (MINIX 3) this
modularization has been extended to the 1/0 device drivers, which (with the exception of the
clock driver) all run as user programs. Another difference is that UNIX was designed to be
efficient; MINIX was designed to be readable (inasmuch as one can speak of any program
hundreds of pages long as being readable). The MINIX code, for example, has thousands of
comments in it.

MINIX was originally designed for compatibility with Version 7 (V7) UNIX. Version 7 was used as
the model because of its simplicity and elegance. It is sometimes said that Version 7 was an
improvement not only over all its predecessors, but also over all its successors. With the advent
of POSIX, MINIX began evolving toward the new standard, while maintaining backward
compatibility with existing programs. This kind of evolution is common in the computer industry,
as no vendor wants to introduce a new system that none of its existing customers can use
without great upheaval. The version of MINIX described in this book, MINIX 3, is based on the
POSIX standard.

Like UNIX, MINIX was written in the C programming language and was intended to be easy to
port to various computers. The initial implementation was for the IBM PC. MINIX was
subsequently ported to several other platforms. In keeping with the "Small is Beautiful"
philosophy, MINIX originally did not even require a hard disk to run (in the mid-1980s hard disks
were still an expensive novelty). As MINIX grew in functionality and size, it eventually got to the
point that a hard disk was needed for PCs, but in keeping with the MINIX philosophy, a 200-MB
partition is sufficient (for embedded applications, no hard disk is required though). In contrast,
even small Linux systems require 500-MB of disk space, and several GB will be needed to install
common applications.

To the average user sitting at an IBM PC, running MINIX is similar to running UNIX. All of the
basic programs, such as cat, grep, Is, make, and the shell are present and perform the same
functions as their UNIX counterparts. Like the operating system itself, all these utility programs
have been rewritten completely from scratch by the author, his students, and some other
dedicated people, with no AT&T or other proprietary code. Many other freely-distributable
programs now exist, and in many cases these have been successfully ported (recompiled) on
MINIX.

MINIX continued to develop for a decade and MINIX 2 was released in 1997, together with the
second edition of this book, which described the new release. The changes between versions 1
and 2 were substantial (e.g., from 16-bit real mode on an 8088 using floppy disks to 32-bit
protected mode on a 386 using a hard disk) but evolutionary.

[Page 18]

Development continued slowly but systematically until 2004, when Tanenbaum became convinced
that software was getting too bloated and unreliable and decided to pick up the slightly-dormant
MINIX thread again. Together with his students and programmers at the Vrije Universiteit in
Amsterdam, he produced MINIX 3, a major redesign of the system, greatly restructuring the
kernel, reducing its size, and emphasizing modularity and reliability. The new version was
intended both for PCs and embedded systems, where compactness, modularity, and reliability are
crucial. While some people in the group called for a completely new name, it was eventually
decided to call it MINIX 3 since the name MINIX was already well known. By way of analogy,
when Apple abandoned it own operating system, Mac OS 9 and replaced it with a variant of
Berkeley UNIX, the name chosen was Mac OS X rather than APPLIX or something like that.
Similar fundamental changes have happened in the Windows family while retaining the Windows
name.

The MINIX 3 kernel is well under 4000 lines of executable code, compared to millions of



executable lines of code for Windows, Linux, FreeBSD, and other operating systems. Small kernel
size is important because kernel bugs are far more devastating than bugs in user-mode programs
and more code means more bugs. One careful study has shown that the number of detected bugs
per 1000 executable lines of code varies from 6 to 16 (Basili and Perricone, 1984). The actual
number of bugs is probably much higher since the researchers could only count reported bugs,
not unreported bugs. Yet another study (Ostrand et al., 2004) showed that even after more than
a dozen releases, on the average 6% of all files contained bugs that were later reported and after
a certain point the bug level tends to stabilize rather than go asymptotically to zero. This result is
supported by the fact that when a very simple, automated, model-checker was let loose on stable
versions of Linux and OpenBSD, it found hundreds of kernel bugs, overwhelmingly in device
drivers (Chou et al., 2001; and Engler et al., 2001). This is the reason the device drivers were
moved out of the kernel in MINIX 3; they can do less damage in user mode.

Throughout this book MINIX 3 will be used as an example. Most of the comments about the
MINIX 3 system calls, however (as opposed to comments about the actual code), also apply to
other UNIX systems. This remark should be kept in mind when reading the text.

A few words about Linux and its relationship to MINIX may possibly be of interest to some
readers. Shortly after MINIX was released, a USENET newsgroup, comp.os.minix, was formed to
discuss it. Within weeks, it had 40,000 subscribers, most of whom wanted to add vast numbers of
new features to MINIX to make it bigger and better (well, at least bigger). Every day, several
hundred of them offered suggestions, ideas, and frequently snippets of source code. The author of
MINIX was able to successfully resist this onslaught for several years, in order to keep MINIX
clean enough for students to understand and small enough that it could run on computers that
students could afford. For people who thought little of MS-DOS, the existence of MINIX (with
source code) as an alternative was even a reason to finally go out and buy a PC.
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One of these people was a Finnish student named Linus Torvalds. Torvalds installed MINIX on his
new PC and studied the source code carefully. Torvalds wanted to read USENET newsgroups (such
as comp.os.minix) on his own PC rather than at his university, but some features he needed were
lacking in MINIX, so he wrote a program to do that, but soon discovered he needed a different
terminal driver, so he wrote that too. Then he wanted to download and save postings, so he
wrote a disk driver, and then a file system. By Aug. 1991 he had produced a primitive kernel. On
Aug. 25, 1991, he announced it on comp.os.minix. This announcement attracted other people to
help him, and on March 13, 1994 Linux 1.0 was released. Thus was Linux born.

Linux has become one of the notable successes of the open source movement (which MINIX
helped start). Linux is challenging UNIX (and Windows) in many environments, partly because
commodity PCs which support Linux are now available with performance that rivals the
proprietary RISC systems required by some UNIX implementations. Other open source software,
notably the Apache web server and the MySQL database, work well with Linux in the commercial
world. Linux, Apache, MySQL, and the open source Perl and PHP programming languages are
often used together on web servers and are sometimes referred to by the acronym LAMP. For
more on the history of Linux and open source software see DiBona et al. (1999), Moody (2001),
and Naughton (2000).

=3 NEXT
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1.3. Operating System Concepts

The interface between the operating system and the user programs is defined by the set of
"extended instructions" that the operating system provides. These extended instructions have
been traditionally known as system calls, although they can be implemented in several ways. To
really understand what operating systems do, we must examine this interface closely. The calls
available in the interface vary from operating system to operating system (although the
underlying concepts tend to be similar).

We are thus forced to make a choice between (1) vague generalities ("operating systems have
system calls for reading files") and (2) some specific system ("MINIX 3 has a read system call
with three parameters: one to specify the file, one to tell where the data are to be put, and one to
tell how many bytes to read").

We have chosen the latter approach. It's more work that way, but it gives more insight into what
operating systems really do. In Sec. 1.4 we will look closely at the basic system calls present in
UNIX (including the various versions of BSD), Linux, and MINIX 3. For simplicity's sake, we will
refer only to MINI 3, but the corresponding UNIX and Linux system calls are based on POSIX in
most cases. Before we look at the actual system calls, however, it is worth taking a bird's-eye
view of MINIX 3, to get a general feel for what an operating system is all about. This overview
applies equally well to UNIX and Linux, as mentioned above.
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The MINIX 3 system calls fall roughly in two broad categories: those dealing with processes and
those dealing with the file system. We will now examine each of these in turn.

1.3.1. Processes

A key concept in MINIX 3, and in all operating systems, is the process. A process is basically a
program in execution. Associated with each process is its address space, a list of memory
locations from some minimum (usually 0) to some maximum, which the process can read and
write. The address space contains the executable program, the program's data, and its stack.
Also associated with each process is some set of registers, including the program counter, stack
pointer, and other hardware registers, and all the other information needed to run the program.

We will come back to the process concept in much more detail in Chap. 2, but for the time being,
the easiest way to get a good intuitive feel for a process is to think about multiprogramming
systems. Periodically, the operating system decides to stop running one process and start running
another, for example, because the first one has had more than its share of CPU time in the past
second.

When a process is suspended temporarily like this, it must later be restarted in exactly the same
state it had when it was stopped. This means that all information about the process must be
explicitly saved somewhere during the suspension. For example, the process may have several
files open for reading at once. Associated with each of these files is a pointer giving the current
position (i.e., the number of the byte or record to be read next). When a process is temporarily
suspended, all these pointers must be saved so that a r ead call executed after the process is



restarted will read the proper data. In many operating systems, all the information about each
process, other than the contents of its own address space, is stored in an operating system table
called the process table, which is an array (or linked list) of structures, one for each process
currently in existence.

Thus, a (suspended) process consists of its address space, usually called the core image (in
honor of the magnetic core memories used in days of yore), and its process table entry, which
contains its registers, among other things.

The key process management system calls are those dealing with the creation and termination of
processes. Consider a typical example. A process called the command interpreter or shell
reads commands from a terminal. The user has just typed a command requesting that a program
be compiled. The shell must now create a new process that will run the compiler. When that
process has finished the compilation, it executes a system call to terminate itself.
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On Windows and other operating systems that have a GUI, (double) clicking on a desktop icon
launches a program in much the same way as typing its name at the command prompt. Although
we will not discuss GUIs much, they are really simple command interpreters.

If a process can create one or more other processes (usually referred to as child processes) and
these processes in turn can create child processes, we quickly arrive at the process tree structure
of Fig. 1-5. Related processes that are cooperating to get some job done often need to
communicate with one another and synchronize their activities. This communication is called
interprocess communication, and will be addressed in detail in Chap. 2.

Figure 1-5. A process tree. Process A created two child processes, B
and C. Process B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release unused memory),
wait for a child process to terminate, and overlay its program with a different one.

Occasionally, there is a need to convey information to a running process that is not sitting around
waiting for it. For example, a process that is communicating with another process on a different
computer does so by sending messages to the remote process over a network. To guard against
the possibility that a message or its reply is lost, the sender may request that its own operating
system notify it after a specified number of seconds, so that it can retransmit the message if no
acknowledgement has been received yet. After setting this timer, the program may continue
doing other work.

When the specified number of seconds has elapsed, the operating system sends an alarm signal



to the process. The signal causes the process to temporarily suspend whatever it was doing, save
its registers on the stack, and start running a special signal handling procedure, for example, to
retransmit a presumably lost message. When the signal handler is done, the running process is
restarted in the state it was in just before the signal. Signals are the software analog of hardware
interrupts. They are generated by a variety of causes in addition to timers expiring. Many traps
detected by hardware, such as executing an illegal instruction or using an invalid address, are
also converted into signals to the guilty process.
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Each person authorized to use a MINIX 3 system is assigned a UID (User IDentification) by the
system administrator. Every process started has the UID of the person who started it. A child
process has the same UID as its parent. Users can be members of groups, each of which has a
GID (Group IDentification).

One UID, called the superuser (in UNIX), has special power and may violate many of the
protection rules. In large installations, only the system administrator knows the password needed
to become superuser, but many of the ordinary users (especially students) devote considerable
effort to trying to find flaws in the system that allow them to become superuser without the
password.

We will study processes, interprocess communication, and related issues in Chap. 2.

1.3.2. Files

The other broad category of system calls relates to the file system. As noted before, a major
function of the operating system is to hide the peculiarities of the disks and other 1/0 devices and
present the programmer with a nice, clean abstract model of device-independent files. System
calls are obviously needed to create files, remove files, read files, and write files. Before a file can
be read, it must be opened, and after it has been read it should be closed, so calls are provided to
do these things.

To provide a place to keep files, MINIX 3 has the concept of a directory as a way of grouping
files together. A student, for example, might have one directory for each course he is taking (for
the programs needed for that course), another directory for his electronic mail, and still another
directory for his World Wide Web home page. System calls are then needed to create and remove
directories. Calls are also provided to put an existing file into a directory, and to remove a file
from a directory. Directory entries may be either files or other directories. This model also gives
rise to a hierarchythe file systemas shown in Fig. 1-6.

Figure 1-6. A file system for a university department.

(This item is displayed on page 23 in the print version)

[View full size image]




The process and file hierarchies both are organized as trees, but the similarity stops there.
Process hierarchies usually are not very deep (more than three levels is unusual), whereas file
hierarchies are commonly four, five, or even more levels deep. Process hierarchies are typically
short-lived, generally a few minutes at most, whereas the directory hierarchy may exist for years.
Ownership and protection also differ for processes and files. Typically, only a parent process may
control or even access a child process, but mechanisms nearly always exist to allow files and
directories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path name from the top of
the directory hierarchy, the root directory. Such absolute path names consist of the list of
directories that must be traversed from the root directory to get to the file, with slashes
separating the components. In Fig. 1-6, the path for file CS101 is
/Faculty/Prof.Brown/Courses/CS101. The leading slash indicates that the path is absolute, that is,
starting at the root directory. As an aside, in Windows, the backslash (\) character is used as the
separator instead of the slash (/) character, so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will use the UNIX convention for
paths.
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At every instant, each process has a current working directory, in which path names not
beginning with a slash are looked for. As an example, in Fig. 1-6, if /Faculty/Prof.Brown were the
working directory, then use of the path name Courses/CS101 would yield the same file as the
absolute path name given above. Processes can change their working directory by issuing a
system call specifying the new working directory.

Files and directories in MINIX 3 are protected by assigning each one an 11-bit binary protection
code. The protection code consists of three 3-bit fields: one for the owner, one for other members
of the owner's group (users are divided into groups by the system administrator), one for
everyone else, and 2 bits we will discuss later. Each field has a bit for read access, a bit for write
access, and a bit for execute access. These 3 bits are known as the rwx bits. For example, the
protection code rwxr-x--x means that the owner can read, write, or execute the file, other group



members can read or execute (but not write) the file, and everyone else can execute (but not
read or write) the file. For a directory (as opposed to a file), x indicates search permission. A dash
means that the corresponding permission is absent (the bit is zero).
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Before a file can be read or written, it must be opened, at which time the permissions are
checked. If access is permitted, the system returns a small integer called a file descriptor to use
in subsequent operations. If the access is prohibited, an error code (1) is returned.

Another important concept in MINIX 3 is the mounted file system. Nearly all personal computers
have one or more CD-ROM drives into which CD-ROMs can be inserted and removed. To provide a
clean way to deal with removable media (CD-ROMs, DVDs, floppies, Zip drives, etc.), MINIX 3
allows the file system on a CD-ROM to be attached to the main tree. Consider the situation of Fig.
1-7(a). Before the nount call, the root file system, on the hard disk, and a second file system,
on a CD-ROM, are separate and unrelated.

Figure 1-7. (a) Before mounting, the files on drive O are not accessible.
(b) After mounting, they are part of the file hierarchy.

However, the file system on the CD-ROM cannot be used, because there is no way to specify path
names on it. MINIX 3 does not allow path names to be prefixed by a drive name or number; that
is precisely the kind of device dependence that operating systems ought to eliminate. Instead, the
nmount system call allows the file system on the CD-ROM to be attached to the root file system
wherever the program wants it to be. In Fig. 1-7(b) the file system on drive O has been mounted
on directory b, thus allowing access to files /b/x and /b/y. If directory b had originally contained
any files they would not be accessible while the CD-ROM was mounted, since /b would refer to the
root directory of drive 0. (Not being able to access these files is not as serious as it at first seems:
file systems are nearly always mounted on empty directories.) If a system contains multiple hard
disks, they can all be mounted into a single tree as well.

Another important concept in MINIX 3 is the special file. Special files are provided in order to
make 1/0 devices look like files. That way, they can be read and written using the same system
calls as are used for reading and writing files. Two kinds of special files exist: block special files
and character special files. Block special files are normally used to model devices that consist
of a collection of randomly addressable blocks, such as disks. By opening a block special file and
reading, say, block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Similarly, character special files are
used to model printers, modems, and other devices that accept or output a character stream. By



convention, the special files are kept in the /dev directory. For example, /dev/Ip might be the line
printer.
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The last feature we will discuss in this overview is one that relates to both processes and files:
pipes. A pipe is a sort of pseudofile that can be used to connect two processes, as shown in Fig.
1-8. If processes A and B wish to talk using a pipe, they must set it up in advance. When process
A wants to send data to process B, it writes on the pipe as though it were an output file. Process
B can read the data by reading from the pipe as though it were an input file. Thus,
communication between processes in MINIX 3 looks very much like ordinary file reads and writes.
Stronger yet, the only way a process can discover that the output file it is writing on is not really
a file, but a pipe, is by making a special system call.

Figure 1-8. Two processes connected by a pipe.

Frocess Frocess

E—

1.3.3. The Shell

The operating system is the code that carries out the system calls. Editors, compilers,

assemblers, linkers, and command interpreters definitely are not part of the operating system,
even though they are important and useful. At the risk of confusing things somewhat, in this
section we will look briefly at the MINIX 3 command interpreter, called the shell. Although it is
not part of the operating system, it makes heavy use of many operating system features and thus
serves as a good example of how the system calls can be used. It is also the primary interface
between a user sitting at his terminal and the operating system, unless the user is using a
graphical user interface. Many shells exist, including csh, ksh, zsh, and bash. All of them support
the functionality described below, which derives from the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as standard input and
standard output. It starts out by typing the prompt, a character such as a dollar sign, which tells
the user that the shell is waiting to accept a command. If the user now types

dat e
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for example, the shell creates a child process and runs the date program as the child. While the
child process is running, the shell waits for it to terminate. When the child finishes, the shell types
the prompt again and tries to read the next input line.

The user can specify that standard output be redirected to a file, for example,

date >file



Similarly, standard input can be redirected, as in

sort <filel >file2

which invokes the sort program with input taken from filel and output sent to file2.

The output of one program can be used as the input for another program by connecting them
with a pipe. Thus

cat filel file2 file3 | sort >/dev/lp

invokes the cat program to concatenate three files and send the output to sort to arrange all the
lines in alphabetical order. The output of sort is redirected to the file /dev/Ip, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to complete. Instead
it just gives a prompt immediately. Consequently,

cat filel file2 file3 | sort >/dev/ilp &

starts up the sort as a background job, allowing the user to continue working normally while the
sort is going on. The shell has a number of other interesting features, which we do not have space
to discuss here. Most books for UNIX beginners are useful for MINIX 3 users who want to learn
more about using the system. Examples are Ray and Ray (2003) and Herborth (2005).

e prey NEXT b
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1.4. System Calls

Armed with our general knowledge of how MINIX 3 deals with processes and files, we can now
begin to look at the interface between the operating system and its application programs, that is,
the set of system calls. Although this discussion specifically refers to POSIX (International
Standard 9945-1), hence also to MINI 3, UNIX, and Linux, most other modern operating systems
have system calls that perform the same functions, even if the details differ. Since the actual
mechanics of issuing a system call are highly machine dependent, and often must be expressed in
assembly code, a procedure library is provided to make it possible to make system calls from C
programs.

It is useful to keep the following in mind: any single-CPU computer can execute only one
instruction at a time. If a process is running a user program in user mode and needs a system
service, such as reading data from a file, it has to execute a trap or system call instruction to
transfer control to the operating system. The operating system then figures out what the calling
process wants by inspecting the parameters. Then it carries out the system call and returns
control to the instruction following the system call. In a sense, making a system call is like making
a special kind of procedure call, only system calls enter the kernel or other privileged operating
system components and procedure calls do not.
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To make the system call mechanism clearer, let us take a quick look at read . It has three
parameters: the first one specifying the file, the second one specifying the buffer, and the third
one specifying the number of bytes to read. A call to read from a C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually read in count .
This value is normally the same as nbytes , but may be smaller, if, for example, end-of-file is
encountered while reading.

If the system call cannot be carried out, either due to an invalid parameter or a disk error, count
is set to 1, and the error number is put in a global variable, errno . Programs should always check
the results of a system call to see if an error occurred.

MINIX 3 has a total of 53 main system calls. These are listed in Fig. 1-9 , grouped for convenience
in six categories. A few other calls exist, but they have very specialized uses so we will omit them
here. In the following sections we will briefly examine each of the calls of Fig. 1-9 to see what it
does. To a large extent, the services offered by these calls determine most of what the operating
system has to do, since the resource management on personal computers is minimal (at least
compared to big machines with many users).

Process management

pid = fork ()



Create a child process identical to the parent

pid = wai t pi d (pid, &statloc, opts)

Wait for a child to terminate

s = wait (&status)

Old version of waitpid

s = execve (name, argv, envp)

Replace a process core image

exit (status)

Terminate process execution and return status

size = brk (addr)

Set the size of the data segment

pid = getpid ()

Return the caller's process id

pid = get pgrp ()

Return the id of the caller's process group

pid = setsid ()

Create a new session and return its proc. group id

| = ptrace (req, pid, addr, data)
Used for debugging

Signals



s = si gaction (sig, &act, &oldact)

Define action to take on signals

s = si greturn (&context)

Return from a signal

s = si gprocmask (how, &set, &old)

Examine or change the signal mask

s = si gpendi ng (set)

Get the set of blocked signals

s = si gsuspend (sigmask)

Replace the signal mask and suspend the process

s=kill (pid, sig)

Send a signal to a process

residual = al ar m(seconds)

Set the alarm clock

s = pause ()
Suspend the caller until the next signal
File Management

fd = creat (name, mode)

Obsolete way to create a new file

fd = nknod (name, mode, addr)

Create a regular, special, or directory i-node



fd = open (file, how, ...)

Open a file for reading, writing or both

s = cl ose (fd)

Close an open file

n = read (fd, buffer, nbytes)

Read data from a file into a buffer

n =wite (fd, buffer, nbytes)

Write data from a buffer into a file

pos = | seek (fd, offset, whence)

Move the file pointer

s = stat (name, &buf)

Get a file's status information

s=fstat (fd, &buf)

Get a file's status information

fd = dup (fd)

Allocate a new file descriptor for an open file

s = pi pe (&fd[0])

Create a pipe

s=ioctl (fd, request, argp)



Perform special operations on a file

s = access (name, amode)

Check a file's accessibility

s = renane (old, new)

Give a file a new name

s=fcntl (fd, cmd, ...)

File locking and other operations
Dir. & File System Mgt .

s = nkdi r (name, mode)

Create a new directory

s=rnmdir (name)

Remove an empty directory

s = link (namel, name2)

Create a new entry, name2, pointing to namel

s = unli nk (name)

Remove a directory entry

s = nount (special, name, flag)

Mount a file system

s = unount (special)

Unmount a file system



s=sync ()

Flush all cached blocks to the disk

s = chdir (dirname)

Change the working directory

s = chroot (dirname)
Change the root directory
Protection

s = chnod (name, mode)

Change a file's protection bits

uid = getuid ()

Get the caller's uid

gid = getgid ()

Get the caller's gid

s = set ui d (uid)

Set the caller's uid

s = set gi d (gid)

Set the caller’'s gid

s = chown (name, owner, group)

Change a file's owner and group

oldmask = umask (complmode)

Change the mode mask



Time Management

seconds = ti ne (&seconds)

Get the elapsed time since Jan. 1, 1970

s = stine (tp)

Set the elapsed time since Jan. 1, 1970

s = utine (file, timep)

Set a file's "last access” time

s = ti nmes (buffer)

Get the user and system times used so far

Figure 1-
9. The
main
MINIX
system
calls. fd is
a file
descriptor;
nis a byte
count.

(This item is
displayed on page
28 in the print
version)

This is a good place to point out that the mapping of POSIX procedure calls onto system calls is
not necessarily one-to-one. The POSIX standard specifies a number of procedures that a
conformant system must supply, but it does not specify whether they are system calls, library
calls, or something else. In some cases, the POSIX procedures are supported as library routines in
MINIX 3. In others, several required procedures are only minor variations of one another, and one
system call handles all of them.

1.4.1. System Calls for Process Management

The first group of calls in Fig. 1-9 deals with process management. For k is a good place to start
the discussion. For k is the only way to create a new process in MINIX 3. It creates an exact
duplicate of the original process, including all the file descriptors, registerseverything. After the
fork , the original process and the copy (the parent and child) go their separate ways. All the



variables have identical values at the time of the f or k , but since the parent's data are copied to
create the child, subsequent changes in one of them do not affect the other one. (The program
text, which is unchangeable, is shared between parent and child.) The f or k call returns a value,
which is zero in the child and equal to the child's process identifier or PID in the parent. Using the
returned PID, the two processes can see which one is the parent process and which one is the
child process.
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In most cases, after a f ork , the child will need to execute different code from the parent.
Consider the shell. It reads a command from the terminal, forks off a child process, waits for the
child to execute the command, and then reads the next command when the child terminates. To
wait for the child to finish, the parent executes a wai t pi d system call, which just waits until the
child terminates (any child if more than one exists). Wi t pi d can wait for a specific child, or for
any old child by setting the first parameter to 1. When wai t pi d completes, the address pointed to
by the second parameter, statloc , will be set to the child's exit status (normal or abnormal
termination and exit value). Various options are also provided, specified by the third parameter.
The wai t pi d call replaces the previous wai t call, which is now obsolete but is provided for reasons
of backward compatibility.

Now consider how f or k is used by the shell. When a command is typed, the shell forks off a new
process. This child process must execute the user command. It does this by using the execve
system call, which causes its entire core image to be replaced by the file named in its first
parameter. (Actually, the system call itself is exec , but several different library procedures call it
with different parameters and slightly different names. We will treat these as system calls here.)A
highly simplified shell illustrating the use of fork , wai t pi d , and execve is shown in Fig. 1-10 .

Figure 1-10. A stripped-down shell. Throughout this book, TRUE is
assumed to be defined as 1.

#define TRUE 1

whi |l e (TRUE) { /* repeat forever */
type_pronpt(); /* display pronpt on the screen */
read_command(comand, paraneters); /* read input fromterm nal */
if (fork() '=0){ /* fork off child process */
/* Parent code. */
wai tpid(1l, &status, 0); /* wait for child to exit */
} else {

/* Child code. */
execve(comuand, paraneters, 0); [/* execute conmand */

In the most general case, execve has three parameters: the name of the file to be executed, a
pointer to the argument array, and a pointer to the environment array. These will be described
shortly. Various library routines, including execl , execv , execle , and execve , are provided to
allow the parameters to be omitted or specified in various ways. Throughout this book we will use
the name exec to represent the system call invoked by all of these.
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Let us consider the case of a command such as

cp filel file2

used to copy filel to file2 . After the shell has forked, the child process locates and executes the
file cp and passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) contains the declaration

mai n(argc, argv, envp)

where argc is a count of the number of items on the command line, including the program name.
For the example above, argc is 3.

The second parameter, argv , is a pointer to an array. Element i of that array is a pointer to the i
-th string on the command line. In our example, argv [0] would point to the string "cp", argv [1]
would point to the string "filel", and argv [2] would point to the string "file2".

The third parameter of main , envp , is a pointer to the environment, an array of strings
containing assignments of the form name=value used to pass information such as the terminal
type and home directory name to a program. In Fig. 1-10 , no environment is passed to the child,
so the third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most complex of all the POSIX
system calls. All the other ones are much simpler. As an example of a simple one, consider exit ,
which processes should use when they are finished executing. It has one parameter, the exit
status (O to 255), which is returned to the parent via statloc in the wai t pi d system call. The low-
order byte of status contains the termination status, with O being normal termination and the
other values being various error conditions. The high-order byte contains the child's exit status (O
to 255). For example, if a parent process executes the statement

n = waitpid(l, &statloc, options);

it will be suspended until some child process terminates. If the child exits with, say, 4 as the
parameter to exit , the parent will be awakened with n set to the child's PID and statloc set to
0x0400 (the C convention of prefixing hexadecimal constants with Ox will be used throughout this
book).

Processes in MINIX 3 have their memory divided up into three segments: the text segment (i.e.,
the program code), the data segment (i.e., the variables), and the stack segment . The data
segment grows upward and the stack grows downward, as shown in Fig. 1-11 . Between them is
a gap of unused address space. The stack grows into the gap automatically, as needed, but
expansion of the data segment is done explicitly by using a system call, br k , which specifies the
new address where the data segment is to end. This address may be more than the current value
(data segment is growing) or less than the current value (data segment is shrinking). The
parameter must, of course, be less than the stack pointer or the data and stack segments would
overlap, which is forbidden.
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Figure 1-11. Processes have three segments: text, data, and stack. In
this example, all three are in one address space, but separate
instruction and data space is also supported.

As a convenience for programmers, a library routine sbrk is provided that also changes the size of
the data segment, only its parameter is the number of bytes to add to the data segment
(negative parameters make the data segment smaller). It works by keeping track of the current
size of the data segment, which is the value returned by br k , computing the new size, and
making a call asking for that number of bytes. The brk and sbr k calls, however, are not defined
by the POSIX standard. Programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was not thought to
be a suitable subject for standardization since few programmers use it directly.

The next process system call is also the simplest, get pi d . It just returns the caller's PID.
Remember that in f or k , only the parent was given the child's PID. If the child wants to find out
its own PID, it must use get pi d . The get pgr p call returns the PID of the caller's process group.
set si d creates a new session and sets the process group's PID to the caller's. Sessions are
related to an optional feature of POSIX, job control , which is not supported by MINIX 3 and
which will not concern us further.

The last process management system call, ptrace , is used by debugging programs to control the
program being debugged. It allows the debugger to read and write the controlled process’
memory and manage it in other ways.

1.4.2. System Calls for Signaling

Although most forms of interprocess communication are planned, situations exist in which
unexpected communication is needed. For example, if a user accidently tells a text editor to list
the entire contents of a very long file, and then realizes the error, some way is needed to
interrupt the editor. In MINIX 3, the user can hit the CTRL-C key on the keyboard, which sends a
signal to the editor. The editor catches the signal and stops the print-out. Signals can also be
used to report certain traps detected by the hardware, such as illegal instruction or floating point
overflow. Timeouts are also implemented as signals.
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When a signal is sent to a process that has not announced its willingness to accept that signal, the
process is simply killed without further ado. To avoid this fate, a process can use the si gacti on
system call to announce that it is prepared to accept some signal type, and to provide the address
of the signal handling procedure and a place to store the address of the current one. After a

si gacti on call, if a signal of the relevant type is generated (e.g., by pressing CTRL-C), the state



of the process is pushed onto its own stack, and then the signal handler is called. It may run for
as long as it wants to and perform any system calls it wants to. In practice, though, signal
handlers are usually fairly short. When the signal handling procedure is done, it calls si gret urn to
continue where it left off before the signal. The si gacti on call replaces the older si gnal call, which
is now provided as a library procedure, however, for backward compatibility.

Signals can be blocked in MINIX 3. A blocked signal is held pending until it is unblocked. It is not
delivered, but also not lost. The si gpr ocmask call allows a process to define the set of blocked
signals by presenting the kernel with a bitmap. It is also possible for a process to ask for the set
of signals currently pending but not allowed to be delivered due to their being blocked. The

si gpendi ng call returns this set as a bitmap. Finally, the si gsuspend call allows a process to
atomically set the bitmap of blocked signals and suspend itself.

Instead of providing a function to catch a signal, the program may also specify the constant
SIG_IGN to have all subsequent signals of the specified type ignored, or SIG_DFL to restore the
default action of the signal when it occurs. The default action is either to Kill the process or ignore
the signal, depending upon the signal. As an example of how SIG_IGN is used, consider what
happens when the shell forks off a background process as a result of

conmand &

It would be undesirable for a SIGINT signal (generated by pressing CTRL-C) to affect the
background process, so after the f or k but before the exec , the shell does

sigaction(SIA NT, SIGIGN, NULL);

and

sigaction(SIGQUI T, SIG.IGN, NULL);

to disable the SIGINT and SIGQUIT signals. (SIGQUIT is generated by CTRL-\; it is the same as
SIGINT generated by CTRL-C except that if it is not caught or ignored it makes a core dump of
the process killed.) For foreground processes (no ampersand), these signals are not ignored.

[Page 33]

Hitting CTRL-C is not the only way to send a signal. The ki || system call allows a process to
signal another process (provided they have the same UID unrelated processes cannot signal each
other). Getting back to the example of background processes used above, suppose a background
process is started up, but later it is decided that the process should be terminated. SIGINT and
SIGQUIT have been disabled, so something else is needed. The solution is to use the Kill program,
which uses the ki | | system call to send a signal to any process. By sending signal 9 (SIGKILL), to
a background process, that process can be killed. SIGKILL cannot be caught or ignored.

For many real-time applications, a process needs to be interrupted after a specific time interval to
do something, such as to retransmit a potentially lost packet over an unreliable communication
line. To handle this situation, the al ar msystem call has been provided. The parameter specifies an
interval, in seconds, after which a SIGALRM signal is sent to the process. A process may only
have one alarm outstanding at any instant. If an al ar mcall is made with a parameter of 10
seconds, and then 3 seconds later another al ar mcall is made with a parameter of 20 seconds,



only one signal will be generated, 20 seconds after the second call. The first signal is canceled by
the second call to al ar m. If the parameter to al ar mis zero, any pending alarm signal is canceled.
If an alarm signal is not caught, the default action is taken and the signaled process is killed.

It sometimes occurs that a process has nothing to do until a signal arrives. For example, consider
a computer-aided-instruction program that is testing reading speed and comprehension. It
displays some text on the screen and then calls al ar mto signal it after 30 seconds. While the
student is reading the text, the program has nothing to do. It could sit in a tight loop doing
nothing, but that would waste CPU time that another process or user might need. A better idea is
to use pause , which tells MINIX 3 to suspend the process until the next signal.

1.4.3. System Calls for File Management

Many system calls relate to the file system. In this section we will look at calls that operate on
individual files; in the next one we will examine those that involve directories or the file system as
a whole. To create a new file, the creat call is used (why the call is creat and not creat e has been
lost in the mists of time). Its parameters provide the name of the file and the protection mode.
Thus

fd = creat("abc", 0751);

creates a file called abc with mode 0751 octal (in C, a leading zero means that a constant is in
octal). The low-order 9 bits of 0751 specify the rwx bits for the owner (7 means read-write-
execute permission), his group (5 means read-execute), and others (1 means execute only).

Creat not only creates a new file but also opens it for writing, regardless of the file's mode. The
file descriptor returned, fd , can be used to write the file. If a creat is done on an existing file,
that file is truncated to length O, provided, of course, that the permissions are all right. The creat
call is obsolete, as open can now create new files, but it has been included for backward
compatibility.
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Special files are created using nknod rather than creat . A typical call is

fd = nknod("/dev/ttyc2", 020744, 0x0402);

which creates a file named /dev/ttyc2 (the usual name for console 2) and gives it mode 020744
octal (a character special file with protection bits rwxr--r-- ). The third parameter contains the
major device (4) in the high-order byte and the minor device (2) in the low-order byte. The major
device could have been anything, but a file named /dev/ttyc2 ought to be minor device 2. Calls to
nmknod fail unless the caller is the superuser.

To read or write an existing file, the file must first be opened using open . This call specifies the
file name to be opened, either as an absolute path name or relative to the working directory, and
a code of O_RDONLY , O_WRONLY , or O_RDWR , meaning open for reading, writing, or both. The
file descriptor returned can then be used for reading or writing. Afterward, the file can be closed
by cl ose , which makes the file descriptor available for reuse on a subsequent creat or open .

The most heavily used calls are undoubtedly read and write . We saw r ead earlier; wite has the
same parameters.



Although most programs read and write files sequentially, for some applications programs need to
be able to access any part of a file at random. Associated with each file is a pointer that indicates
the current position in the file. When reading (writing) sequentially, it normally points to the next
byte to be read (written). The | seek call changes the value of the position pointer, so that
subsequent calls to read or wri t e can begin anywhere in the file, or even beyond the end.

| seek has three parameters: the first is the file descriptor for the file, the second is a file position,
and the third tells whether the file position is relative to the beginning of the file, the current
position, or the end of the file. The value returned by | seek is the absolute position in the file after
changing the pointer.

For each file, MINIX 3 keeps track of the file mode (regular file, special file, directory, and so on),
size, time of last modification, and other information. Programs can ask to see this information via
the stat and f st at system calls. These differ only in that the former specifies the file by name,
whereas the latter takes a file descriptor, making it useful for open files, especially standard input
and standard output, whose names may not be known. Both calls provide as the second
parameter a pointer to a structure where the information is to be put. The structure is shown in
Fig. 1-12 .

Figure 1-12. The structure used to return information for the stat and
fstat system calls. In the actual code, symbolic names are used for
some of the types.

(This item is displayed on page 35 in the print version)

struct stat({

short st _dev; /* device where i-node bel ongs */
unsi gned short st_ino; /* i-node nunber */

unsi gned short st_node; /* node word */

short st_nlink; /* nunber of |inks */

short st _uid; /* user id */

short st _gid; /[* group id */

short st_rdev; /* major/mnor device for special files */
| ong st_si ze; /* file size */

| ong st_atine; /* time of |ast access */

| ong st_ntine; /* time of last nodification */

| ong st_ctine; /* time of last change to i-node */

When manipulating file descriptors, the dup call is occasionally helpful. Consider, for example, a
program that needs to close standard output (file descriptor 1), substitute another file as
standard output, call a function that writes some output onto standard output, and then restore
the original situation. Just closing file descriptor 1 and then opening a new file will make the new
file standard output (assuming standard input, file descriptor O, is in use), but it will be impossible
to restore the original situation later.
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The solution is first to execute the statement

fd = dup(l);



which uses the dup system call to allocate a new file descriptor, fd , and arrange for it to
correspond to the same file as standard output. Then standard output can be closed and a new
file opened and used. When it is time to restore the original situation, file descriptor 1 can be
closed, and then

n = dup(fd);

executed to assign the lowest file descriptor, namely, 1, to the same file as fd . Finally, fd can be
closed and we are back where we started.

The dup call has a variant that allows an arbitrary unassigned file descriptor to be made to refer to
a given open file. It is called by

dup2(fd, fd2);

where fd refers to an open file and fd2 is the unassigned file descriptor that is to be made to refer
to the same file as fd . Thus if fd refers to standard input (file descriptor 0) and fd2 is 4, after the
call, file descriptors 0 and 4 will both refer to standard input.

Interprocess communication in MINIX 3 uses pipes, as described earlier. When a user types

cat filel file2 | sort

the shell creates a pipe and arranges for standard output of the first process to write to the pipe,
so standard input of the second process can read from it. The pi pe system call creates a pipe and
returns two file descriptors, one for writing and one for reading. The call is
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pi pe(&f d[0]);

where fd is an array of two integers and fd [0] is the file descriptor for reading and fd [1] is the
one for writing. Typically, a f or k comes next, and the parent closes the file descriptor for reading
and the child closes the file descriptor for writing (or vice versa), so when they are done, one
process can read the pipe and the other can write on it.

Figure 1-13 depicts a skeleton procedure that creates two processes, with the output of the first
one piped into the second one. (A more realistic example would do error checking and handle
arguments.) First a pipe is created, and then the procedure forks, with the parent eventually
becoming the first process in the pipeline and the child process becoming the second one. Since
the files to be executed, processl and process2 , do not know that they are part of a pipeline, it is
essential that the file descriptors be manipulated so that the first process' standard output be the
pipe and the second one's standard input be the pipe. The parent first closes off the file descriptor
for reading from the pipe. Then it closes standard output and does a DUP call that allows file
descriptor 1 to write on the pipe. It is important to realize that dup always returns the lowest
available file descriptor, in this case, 1. Then the program closes the other pipe file descriptor.

Figure 1-13. A skeleton for setting up a two-process pipeline.



(This item is displayed on page 37 in the print version)

#define STD_I NPUTO /* file descriptor for standard input */
#define STD _OQUTPUT1 /* file descriptor for standard output */
pi pel i ne(processl, process2)
char *processl, *processz; /* pointers to program nanes */
{
int fd[2];
pi pe(&fd[0]); /* create a pipe */
if (fork() '=0) {
/* The parent process executes these statenents. */
close(fd[0]); /* process 1 does not need to read from pipe
cl ose( STD_QUTPUT) ; /* prepare for new standard output */
dup(fd[1]); /* set standard output to fd[1] */
close(fd[1]); /* this file descriptor not needed any nore
execl (processl, processl, 0);
} else {
/* The child process executes these statenments. */
close(fd[1]); /* process 2 does not need to wite to pipe
cl ose( STD_I NPUT) ; /* prepare for new standard i nput */
dup(fd[0]); /* set standard input to fd[O] */
close(fd[0]); /* this file descriptor not needed any nore
execl (process2, process2, 0);
}
}

After the exec call, the process started will have file descriptors 0 and 2 be unchanged, and file
descriptor 1 for writing on the pipe. The child code is analogous. The parameter to execl is
repeated because the first one is the file to be executed and the second one is the first
parameter, which most programs expect to be the file name.

The next system call, i oct| , is potentially applicable to all special files. It is, for instance, used by
block device drivers like the SCSI driver to control tape and CD-ROM devices. Its main use,
however, is with special character files, primarily terminals. POSIX defines a number of functions
which the library translates into i oct| calls. The tcgetattr and tcsetattr library functions use i oct |
to change the characters used for correcting typing errors on the terminal, changing the
terminal mode , and so forth.

Traditionally, there are three terminal modes, cooked, raw, and cbreak. Cooked mode is the
normal terminal mode, in which the erase and kill characters work normally, CTRL-S and CTRL-Q
can be used for stopping and starting terminal output, CTRL-D means end of file, CTRL-C
generates an interrupt signal, and CTRL-\ generates a quit signal to force a core dump.

In raw mode , all of these functions are disabled; consequently, every character is passed
directly to the program with no special processing. Furthermore, in raw mode, a read from the
terminal will give the program any characters that have been typed, even a partial line, rather
than waiting for a complete line to be typed, as in cooked mode. Screen editors often use this
mode.
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Cbreak mode is in between. The erase and Kill characters for editing are disabled, as is CTRL-D,
but CTRL-S, CTRL-Q, CTRL-C, and CTRL-\ are enabled. Like raw mode, partial lines can be



returned to programs (if intraline editing is turned off there is no need to wait until a whole line
has been receivedthe user cannot change his mind and delete it, as he can in cooked mode).

POSIX does not use the terms cooked, raw, and cbreak. In POSIX terminology canonical mode
corresponds to cooked mode. In this mode there are eleven special characters defined, and input
is by lines. In noncanonical mode a minimum number of characters to accept and a time,
specified in units of 1/10th of a second, determine how a read will be satisfied. Under POSIX there
is a great deal of flexibility, and various flags can be set to make noncanonical mode behave like
either cbreak or raw mode. The older terms are more descriptive, and we will continue to use
them informally.

I octl has three parameters, for example a call to tcsetattr to set terminal parameters will result
in

ioctl (fd, TCSETS, &termo0s);

The first parameter specifies a file, the second one specifies an operation, and the third one is the
address of the POSIX structure that contains flags and the array of control characters. Other
operation codes instruct the system to postpone the changes until all output has been sent, cause
unread input to be discarded, and return the current values.
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The access system call is used to determine whether a certain file access is permitted by the
protection system. It is needed because some programs can run using a different user's UID. This
SETUID mechanism will be described later.

The r enane system call is used to give a file a new name. The parameters specify the old and new
names.

Finally, the fcnt| call is used to control files, somewhat analogous to i oct| (i.e., both of them are
horrible hacks). It has several options, the most important of which is for advisory file locking.
Using fcnt | , it is possible for a process to lock and unlock parts of files and test part of a file to
see if it is locked. The call does not enforce any lock semantics. Programs must do this
themselves.

1.4.4. System Calls for Directory Management

In this section we will look at some system calls that relate more to directories or the file system
as a whole, rather than just to one specific file as in the previous section. The first two calls, nkdi r
and rndi r , create and remove empty directories, respectively. The next call is i nk . Its purpose
is to allow the same file to appear under two or more names, often in different directories. A
typical use is to allow several members of the same programming team to share a common file,
with each of them having the file appear in his own directory, possibly under different names.
Sharing a file is not the same as giving every team member a private copy, because having a
shared file means that changes that any member of the team makes are instantly visible to the
other membersthere is only one file. When copies are made of a file, subsequent changes made to
one copy do not affect the other ones.

To see how | i nk works, consider the situation of Fig. 1-14(a) . Here are two users, ast and jim ,
each having their own directories with some files. If ast now executes a program containing the
system call

link("/usr/jimmenmo", "/usr/ast/note");



the file memo in jim 's directory is now entered into ast 's directory under the name note .
Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file.

Figure 1-14. (a) Two directories before linking Zusr/jim/memo to
ast’'s directory. (b) The same directories after linking.

(This item is displayed on page 39 in the print version)

Understanding how | i nk works will probably make it clearer what it does. Every file in UNIX has a
unique number, its i-number, that identifies it. This inumber is an index into a table of i-nodes,
one per file, telling who owns the file, where its disk blocks are, and so on. A directory is simply a
file containing a set of (i-number, ASCII name) pairs. In the first versions of UNIX, each directory
entry was 16 bytes2 bytes for the i-number and 14 bytes for the name. A more complicated
structure is needed to support long file names, but conceptually a directory is still a set of (i-
number, ASCII name) pairs. In Fig. 1-14 , mail has inumber 16, and so on. What | i nk does is
simply create a new directory entry with a (possibly new) name, using the i-number of an existing
file. In Fig. 1-14(b) , two entries have the same i-number (70) and thus refer to the same file. If
either one is later removed, using the unl i nk system call, the other one remains. If both are
removed, UNIX sees that no entries to the file exist (a field in the i-node keeps track of the
number of directory entries pointing to the file), so the file is removed from the disk.

[Page 39]

As we have mentioned earlier, the nount system call allows two file systems to be merged into
one. A common situation is to have the root file system containing the binary (executable)
versions of the common commands and other heavily used files, on a hard disk. The user can
then insert a CD-ROM with files to be read into the CD-ROM drive.

By executing the nount system call, the CD-ROM file system can be attached to the root file
system, as shown in Fig. 1-15 . A typical statement in C to perform the mount is

nmount ("/dev/ cdronD", "/mt", 0);

where the first parameter is the name of a block special file for CD-ROM drive 0, the second
parameter is the place in the tree where it is to be mounted, and the third one tells whether the
file system is to be mounted read-write or read-only.



Figure 1-15. (a) File system before the mount. (b) File system after
the mount.

bin  dev lib mnt  usr

(a) {b)

After the nount call, a file on CD-ROM drive 0 can be accessed by just using its path from the root
directory or the working directory, without regard to which drive it is on. In fact, second, third,
and fourth drives can also be mounted anywhere in the tree. The nount call makes it possible to
integrate removable media into a single integrated file hierarchy, without having to worry about
which device a file is on. Although this example involves CD-ROMs, hard disks or portions of hard
disks (often called partitions or minor devices ) can also be mounted this way. When a file
system is no longer needed, it can be unmounted with the unount system call.
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MINIX 3 maintains a block cache cache of recently used blocks in main memory to avoid having
to read them from the disk if they are used again quickly. If a block in the cache is modified (by a
write on a file) and the system crashes before the modified block is written out to disk, the file
system will be damaged. To limit the potential damage, it is important to flush the cache
periodically, so that the amount of data lost by a crash will be small. The system call sync tells
MINIX 3 to write out all the cache blocks that have been modified since being read in. When
MINIX 3 is started up, a program called update is started as a background process to do a sync
every 30 seconds, to keep flushing the cache.

Two other calls that relate to directories are chdir and chroot . The former changes the working
directory and the latter changes the root directory. After the call

chdir("/usr/ast/test");

an open on the file xyz will open /usr/ast/test/xyz . chroot works in an analogous way. Once a
process has told the system to change its root directory, all absolute path names (path names
beginning with a /") will start at the new root. Why would you want to do that? For
securityserver programs for protocols such as FTP (File Transfer Protocol) and HTTP (HyperText
Transfer Protocol) do this so remote users of these services can access only the portions of a file
system below the new root. Only superusers may execute chr oot , and even superusers do not do
it very often.

1.4.5. System Calls for Protection

In MINIX 3 every file has an 11-bit mode used for protection. Nine of these bits are the read-
write-execute bits for the owner, group, and others. The chnod system call makes it possible to
change the mode of a file. For example, to make a file read-only by everyone except the owner,
one could execute



chmod("file", 0644);

The other two protection bits, 02000 and 04000, are the SETGID (set-group-id) and SETUID (set-
user-id) bits, respectively. When any user executes a program with the SETUID bit on, for the
duration of that process the user's effective UID is changed to that of the file's owner. This
feature is heavily used to allow users to execute programs that perform superuser only functions,
such as creating directories. Creating a directory uses nknod , which is for the superuser only. By
arranging for the mkdir program to be owned by the superuser and have mode 04755, ordinary
users can be given the power to execute nknod but in a highly restricted way.
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When a process executes a file that has the SETUID or SETGID bit on in its mode, it acquires an
effective UID or GID different from its real UID or GID. It is sometimes important for a process to
find out what its real and effective UID or GID is. The system calls get ui d and get gi d have been
provided to supply this information. Each call returns both the real and effective UID or GID, so
four library routines are needed to extract the proper information: getuid , getgid , geteuid , and
getegid . The first two get the real UID/GID, and the last two the effective ones.

Ordinary users cannot change their UID, except by executing programs with the SETUID bit on,
but the superuser has another possibility: the set ui d system call, which sets both the effective
and real UIDs. set gi d sets both GIDs. The superuser can also change the owner of a file with the
chown system call. In short, the superuser has plenty of opportunity for violating all the protection
rules, which explains why so many students devote so much of their time to trying to become
superuser.

The last two system calls in this category can be executed by ordinary user processes. The first
one, umask , sets an internal bit mask within the system, which is used to mask off mode bits
when a file is created. After the call

umask(022) ;

the mode supplied by creat and nknod will have the 022 bits masked off before being used. Thus
the call

creat("file", 0777);

will set the mode to 0755 rather than 0777. Since the bit mask is inherited by child processes, if
the shell does a unask just after login, none of the user's processes in that session will accidently
create files that other people can write on.

When a program owned by the root has the SETUID bit on, it can access any file, because its
effective UID is the superuser. Frequently it is useful for the program to know if the person who
called the program has permission to access a given file. If the program just tries the access, it
will always succeed, and thus learn nothing.

What is needed is a way to see if the access is permitted for the real UID. The access system call
provides a way to find out. The mode parameter is 4 to check for read access, 2 for write access,
and 1 for execute access. Combinations of these values are also allowed. For example, with mode
equal to 6, the call returns 0 if both read and write access are allowed for the real ID; otherwisel



is returned. With mode equal to O, a check is made to see if the file exists and the directories
leading up to it can be searched.
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Although the protection mechanisms of all UNIX-like operating systems are generally similar,
there are some differences and inconsistencies that lead to security vulnerabilities. See Chen et
al. (2002 ) for a discussion.

1.4.6. System Calls for Time Management

MINIX 3 has four system calls that involve the time-of-day clock. Ti ne just returns the current
time in seconds, with O corresponding to Jan. 1, 1970 at midnight (just as the day was starting,
not ending). Of course, the system clock must be set at some point in order to allow it to be read
later, so sti me has been provided to let the clock be set (by the superuser). The third time call is
uti me , which allows the owner of a file (or the superuser) to change the time stored in a file's i-
node. Application of this system call is fairly limited, but a few programs need it, for example,
touch , which sets the file's time to the current time.

Finally, we have ti nmes , which returns the accounting information to a process, so it can see how
much CPU time it has used directly, and how much CPU time the system itself has expended on
its behalf (handling its system calls). The total user and system times used by all of its children
combined are also returned.

MNEXT B
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1.5. Operating System Structure

Now that we have seen what operating systems look like on the outside (i.e, the programmer's
interface), it is time to take a look inside. In the following sections, we will examine five different
structures that have been tried, in order to get some idea of the spectrum of possibilities. These
are by no means exhaustive, but they give an idea of some designs that have been tried in
practice. The five designs are monolithic systems, layered systems, virtual machines, exokernels,
and client-server systems.

1.5.1. Monolithic Systems

By far the most common organization, this approach might well be subtitled "The Big Mess." The
structure is that there is no structure. The operating system is written as a collection of
procedures, each of which can call any of the other ones whenever it needs to. When this
technique is used, each procedure in the system has a well-defined interface in terms of
parameters and results, and each one is free to call any other one, if the latter provides some
useful computation that the former needs.

To construct the actual object program of the operating system when this approach is used, one
first compiles all the individual procedures, or files containing the procedures, and then binds
them all together into a single object file using the system linker. In terms of information hiding,
there is essentially noneevery procedure is visible to every other procedure (as opposed to a
structure containing modules or packages, in which much of the information is hidden away inside
modules, and only the officially designated entry points can be called from outside the module).
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Even in monolithic systems, however, it is possible to have at least a little structure. The services
(system calls) provided by the operating system are requested by putting the parameters in well-
defined places, such as in registers or on the stack, and then executing a special trap instruction
known as a kernel call or supervisor call.

This instruction switches the machine from user mode to kernel mode and transfers control to the
operating system. (Most CPUs have two modes: kernel mode, for the operating system, in which
all instructions are allowed; and user mode, for user programs, in which 1/0 and certain other
instructions are not allowed.)

This is a good time to look at how system calls are performed. Recall that the read call is used like
this:

count = read(fd, buffer, nbytes);
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In preparation for calling the read library procedure, which actually makes the r ead system call,



the calling program first pushes the parameters onto the stack, as shown in steps 13 in Fig. 1-16.
C and C++ compilers push the parameters onto the stack in reverse order for historical reasons
(having to do with making the first parameter to printf, the format string, appear on top of the
stack). The first and third parameters are called by value, but the second parameter is passed by
reference, meaning that the address of the buffer (indicated by &) is passed, not the contents of
the buffer. Then comes the actual call to the library procedure (step 4). This instruction is the
normal procedure call instruction used to call all procedures.

Figure 1-16. The 11 steps in making the system call read(fd, buffer,
nbyt es) .

(This item is displayed on page 43 in the print version)

[View full size image]

The library procedure, possibly written in assembly language, typically puts the system call
number in a place where the operating system expects it, such as a register (step 5). Then it
executes a t r AP instruction to switch from user mode to kernel mode and start execution at a
fixed address within the kernel (step 6). The kernel code that starts examines the system call
number and then dispatches to the correct system call handler, usually via a table of pointers to
system call handlers indexed on system call number (step 7). At that point the system call
handler runs (step 8). Once the system call handler has completed its work, control may be
returned to the user-space library procedure at the instruction following the t r AP instruction (step

9). This procedure then returns to the user program in the usual way procedure calls return (step
10).

To finish the job, the user program has to clean up the stack, as it does after any procedure call
(step 11). Assuming the stack grows downward, as it often does, the compiled code increments



the stack pointer exactly enough to remove the parameters pushed before the call to read. The
program is now free to do whatever it wants to do next.

In step 9 above, we said "may be returned to the user-space library procedure" for good reason.
The system call may block the caller, preventing it from continuing. For example, if it is trying to
read from the keyboard and nothing has been typed yet, the caller has to be blocked. In this
case, the operating system will look around to see if some other process can be run next. Later,
when the desired input is available, this process will get the attention of the system and steps 911
will occur.

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls.
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of it. The utility
procedures do things that are needed by several service procedures, such as fetching data from
user programs. This division of the procedures into three layers is shown in Fig. 1-17.
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Figure 1-17. A simple structuring model for a monolithic system.
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1.5.2. Layered Systems

A generalization of the approach of Fig. 1-17 is to organize the operating system as a hierarchy of
layers, each one constructed upon the one below it. The first system constructed in this way was
the THE system built at the Technische Hogeschool Eindhoven in the Netherlands by E. W.
Dijkstra (1968) and his students. The THE system was a simple batch system for a Dutch
computer, the Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).



The system had 6 layers, as shown in Fig. 1-18. Layer O dealt with allocation of the processor,
switching between processes when interrupts occurred or timers expired. Above layer 0, the
system consisted of sequential processes, each of which could be programmed without having to
worry about the fact that multiple processes were running on a single processor. In other words,
layer O provided the basic multiprogramming of the CPU.

Figure 1-18. Structure of the THE
operating system.
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Layer 1 did the memory management. It allocated space for processes in main memory and on a
512K word drum used for holding parts of processes (pages) for which there was no room in main
memory. Above layer 1, processes did not have to worry about whether they were in memory or
on the drumj; the layer 1 software took care of making sure pages were brought into memory
whenever they were needed.
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Layer 2 handled communication between each process and the operator console. Above this layer
each process effectively had its own operator console. Layer 3 took care of managing the 1/0
devices and buffering the information streams to and from them. Above layer 3 each process
could deal with abstract 1/0 devices with nice properties, instead of real devices with many
peculiarities. Layer 4 was where the user programs were found. They did not have to worry about
process, memory, console, or I/0 management. The system operator process was located in layer
5.

A further generalization of the layering concept was present in the MULTICS system. Instead of
layers, MULTICS was organized as a series of concentric rings, with the inner ones being more
privileged than the outer ones. When a procedure in an outer ring wanted to call a procedure in
an inner ring, it had to make the equivalent of a system call, that is, a TRAP instruction whose
parameters were carefully checked for validity before allowing the call to proceed. Although the
entire operating system was part of the address space of each user process in MULTICS, the
hardware made it possible to designate individual procedures (memory segments, actually) as
protected against reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all the parts of the
system were ultimately linked together into a single object program, in MULTICS, the ring
mechanism was very much present at run time and enforced by the hardware. The advantage of
the ring mechanism is that it can easily be extended to structure user subsystems. For example,
a professor could write a program to test and grade student programs and run this program in
ring n, with the student programs running in ring n + 1 so that they could not change their



grades. The Pentium hardware supports the MULTICS ring structure, but no major operating
system uses it at present.

1.5.3. Virtual Machines

The initial releases of 0S/360 were strictly batch systems. Nevertheless, many 360 users wanted
to have timesharing, so various groups, both inside and outside IBM decided to write timesharing
systems for it. The official IBM timesharing system, TSS/360, was delivered late, and when it
finally arrived it was so big and slow that few sites converted over to it. It was eventually
abandoned after its development had consumed some $50 million (Graham, 1970). But a group
at IBM's Scientific Center in Cambridge, Massachusetts, produced a radically different system that
IBM eventually accepted as a product, and which is now widely used on its mainframes.

This system, originally called CP/CMS and later renamed VM/370 (Seawright and MacKinnon,
1979), was based on a very astute observation: a timesharing system provides (1)
multiprogramming and (2) an extended machine with a more convenient interface than the bare
hardware. The essence of VM/370 is to completely separate these two functions.
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The heart of the system, known as the virtual machine monitor, runs on the bare hardware
and does the multiprogramming, providing not one, but several virtual machines to the next layer
up, as shown in Fig. 1-19. However, unlike all other operating systems, these virtual machines
are not extended machines, with files and other nice features. Instead, they are exact copies of
the bare hardware, including kernel/user mode, 1/0, interrupts, and everything else the real
machine has.

Figure 1-19. The structure of VM/370 with CMS.

[View full size image]
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Because each virtual machine is identical to the true hardware, each one can run any operating
system that will run directly on the bare hardware. Different virtual machines can, and frequently
do, run different operating systems. Some run one of the descendants of OS/360 for batch or
transaction processing, while others run a single-user, interactive system called CMS
(Conversational Monitor System) for timesharing users.

When a CMS program executes a system call, the call is trapped to the operating-system in its

own virtual machine, not to VM/370, just as it would if it were running on a real machine instead
of a virtual one. CMS then issues the normal hardware 1/0 instructions for reading its virtual disk
or whatever is needed to carry out the call. These 1/0 instructions are trapped by VM/370, which



then performs them as part of its simulation of the real hardware. By making a complete
separation of the functions of multiprogramming and providing an extended machine, each of the
pieces can be much simpler, more flexible, and easier to maintain.

The idea of a virtual machine is used nowadays in a different context: running old MS-DOS
programs on a Pentium. When designing the Pentium and its software, both Intel and Microsoft
realized that there would be a big demand for running old software on new hardware. For this
reason, Intel provided a virtual 8086 mode on the Pentium. In this mode, the machine acts like
an 8086 (which is identical to an 8088 from a software point of view), including 16-bit addressing
with a 1-MB limit.

This mode is used by Windows, and other operating systems for running old MS-DOS programs.
These programs are started up in virtual 8086 mode. As long as they execute normal instructions,
they run on the bare hardware. However, when a program tries to trap to the operating system
to make a system call, or tries to do protected 1/0 directly, a trap to the virtual machine monitor
occurs.
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Two variants on this design are possible. In the first one, MS-DOS itself is loaded into the virtual
8086's address space, so the virtual machine monitor just reflects the trap back to MS-DOS, just
as would happen on a real 8086. When MS-DOS later tries to do the 1/0 itself, that operation is
caught and carried out by the virtual machine monitor.

In the other variant, the virtual machine monitor just catches the first trap and does the 1/0
itself, since it knows what all the MS-DOS system calls are and thus knows what each trap is
supposed to do. This variant is less pure than the first one, since it emulates only MS-DOS
correctly, and not other operating systems, as the first one does. On the other hand, it is much
faster, since it saves the trouble of starting up MS-DOS to do the 1/0. A further disadvantage of
actually running MS-DOS in virtual 8086 mode is that MS-DOS fiddles around with the interrupt
enable/disable bit quite a lot, all of which must be emulated at considerable cost.

It is worth noting that neither of these approaches are really the same as VM/370, since the
machine being emulated is not a full Pentium, but only an 8086. With the VM/370 system, it is
possible to run VM/370, itself, in the virtual machine. Even the earliest versions of Windows
require at least a 286 and cannot be run on a virtual 8086.

Several virtual machine implementations are marketed commercially. For companies that provide
web-hosting services, it can be more economical to run multiple virtual machines on a single fast
server (perhaps one with multiple CPUs) than to run many small computers, each hosting a single
Web site. VMWare and Microsoft's Virtual PC are marketed for such installations. These programs
use large files on a host system as simulated disks for their guest systems. To achieve efficiency
they analyze guest system program binaries and allow safe code to run directly on the host
hardware, trapping instructions that make operating system calls. Such systems are also useful in
education. For instance, students working on MINIX 3 lab assignments can work using MINIX 3 as
a guest operating system on VMWare on a Windows, Linux or UNIX host with no risk of damaging
other software installed on the same PC. Most professors teaching other subjects would be very
nervous about sharing laboratory computers with an operating systems course where student
mistakes could corrupt or erase disk data.

Another are a where virtual machines are used, but in a somewhat different way, is for running
Java programs. When Sun Microsystems invented the Java programming language, it also
invented a virtual machine (i.e., a computer architecture) called the JVM (Java Virtual
Machine). The Java compiler produces code for JVM, which then typically is executed by a
software JVM interpreter. The advantage of this approach is that the JVM code can be shipped
over the Internet to any computer that has a JVM interpreter and run there. If the compiler had



produced SPARC or Pentium binary programs, for example, they could not have been shipped and
run anywhere as easily. (Of course, Sun could have produced a compiler that produced SPARC
binaries and then distributed a SPARC interpreter, but JVM is a much simpler architecture to
interpret.) Another advantage of using JVM is that if the interpreter is implemented properly,
which is not completely trivial, incoming JVM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.
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1.5.4. Exokernels

With VM/370, each user process gets an exact copy of the actual computer. With virtual 8086
mode on the Pentium, each user process gets an exact copy of a different computer. Going one
step further, researchers at M.1.T. built a system that gives each user a clone of the actual
computer, but with a subset of the resources (Engler et al., 1995; and Leschke, 2004). Thus one
virtual machine might get disk blocks 0 to 1023, the next one might get blocks 1024 to 2047, and
so on.

At the bottom layer, running in kernel mode, is a program called the exokernel. Its job is to
allocate resources to virtual machines and then check attempts to use them to make sure no
machine is trying to use somebody else's resources. Each user-level virtual machine can run its
own operating system, as on VM/370 and the Pentium virtual 8086s, except that each one is
restricted to using only the resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In the other designs,
each virtual machine thinks it has its own disk, with blocks running from O to some maximum, so
the virtual machine monitor must maintain tables to remap disk addresses (and all other
resources). With the exokernel, this remapping is not needed. The exokernel need only keep track
of which virtual machine has been assigned which resource. This method still has the advantage
of separating the multiprogramming (in the exokernel) from the user operating system code (in
user space), but with less overhead, since all the exokernel has to do is keep the virtual machines
out of each other's hair.

1.5.5. Client-Server Model

VM/370 gains much in simplicity by moving a large part of the traditional operating system code
(implementing the extended machine) into a higher layer, CMS. Nevertheless, VM/370 itself is still
a complex program because simulating a number of virtual 370s is not that simple (especially if
you want to do it reasonably efficiently).

A trend in modern operating systems is to take this idea of moving code up into higher layers
even further and remove as much as possible from the operating system, leaving a minimal
kernel. The usual approach is to implement most of the operating system functions in user
processes. To request a service, such as reading a block of a file, a user process (now known as
the client process) sends the request to a server process, which then does the work and sends
back the answer.
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In this model, shown in Fig. 1-20, all the kernel does is handle the communication between clients
and servers. By splitting the operating system up into parts, each of which only handles one facet
of the system, such as file service, process service, terminal service, or memory service, each



part becomes small and manageable. Furthermore, because all the servers run as user-mode
processes, and not in kernel mode, they do not have direct access to the hardware. As a
consequence, if a bug in the file server is triggered, the file service may crash, but this will not
usually bring the whole machine down.

Figure 1-20. The client-server model.

[View full size image]

Another advantage of the client-server model is its adaptability to use in distributed systems (see
Fig. 1-21). If a client communicates with a server by sending it messages, the client need not
know whether the message is handled locally in its own machine, or whether it was sent across a
network to a server on a remote machine. As far as the client is concerned, the same thing
happens in both cases: a request was sent and a reply came back.

Figure 1-21. The client-server model in a distributed system.

[View full size image]

The picture painted above of a kernel that handles only the transport of messages from clients to
servers and back is not completely realistic. Some operating system functions (such as loading
commands into the physical 1/0 device registers) are difficult, if not impossible, to do from user-
space programs. There are two ways of dealing with this problem. One way is to have some
critical server processes (e.g., 1/0 device drivers) actually run in kernel mode, with complete
access to all the hardware, but still communicate with other processes using the normal message
mechanism. A variant of this mechanism was used in earlier versions of MINIX where drivers were
compiled into the kernel but ran as separate processes.

[Page 51]



The other way is to build a minimal amount of mechanism into the kernel but leave the policy
decisions up to servers in user space. For example, the kernel might recognize that a message
sent to a certain special address means to take the contents of that message and load it into the
1/0 device registers for some disk, to start a disk read. In this example, the kernel would not
even inspect the bytes in the message to see if they were valid or meaningful; it would just
blindly copy them into the disk's device registers. (Obviously, some scheme for limiting such
messages to authorized processes only must be used.) This is how MINIX 3 works, drivers are in
user space and use special kernel calls to request reads and writes of 1/0 registers or to access
kernel information. The split between mechanism and policy is an important concept; it occurs
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[Page 51 (continued)]

1.6. Outline of the Rest of This Book

Operating systems typically have four major components: process management, 1/0 device
management, memory management, and file management. MINIX 3 is also divided into these
four parts. The next four chapters deal with these four topics, one topic per chapter. Chapter 6 is
a list of suggested readings and a bibliography.

The chapters on processes, 1/0, memory management, and file systems have the same general
structure. First the general principles of the subject are laid out. Then comes an overview of the
corresponding area of MINIX 3 (which also applies to UNIX). Finally, the MINIX 3 implementation
is discussed in detail. The implementation section may be skimmed or skipped without loss of
continuity by readers just interested in the principles of operating systems and not interested in
the MINIX 3 code. Readers who are interested in finding out how a real operating system (MINIX
3) works should read all the sections.
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[Page 51 (continued)]

1.7. Summary

Operating systems can be viewed from two viewpoints: resource managers and extended
machines. In the resource manager view, the operating system's job is to efficiently manage the
different parts of the system. In the extended machine view, the job of the system is to provide
the users with a virtual machine that is more convenient to use than the actual machine.
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Operating systems have a long history, starting from the days when they replaced the operator,
to modern multiprogramming systems.

The heart of any operating system is the set of system calls that it can handle. These tell what
the operating system really does. For MINIX 3, these calls can be divided into six groups. The first
group of system calls relates to process creation and termination. The second group handles
signals. The third group is for reading and writing files. A fourth group is for directory
management. The fifth group protects information, and the sixth group is about keeping track of
time.

Operating systems can be structured in several ways. The most common ones are as a monolithic
system, as a hierarchy of layers, as a virtual machine system, using an exokernel, and using the
client-server model.
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[Page 52 (continued)]

Problems

1. What are the two main functions of an operating system?

2. What is the difference between kernel mode and user mode? Why is the difference
important to an operating system?

3. What is multiprogramming?

4. What is spooling? Do you think that advanced personal computers will have spooling
as a standard feature in the future?

5. On early computers, every byte of data read or written was directly handled by the
CPU (i.e., there was no DMADirect Memory Access). What implications does this
organization have for multiprogramming?

6. Why was timesharing not widespread on second-generation computers?

7. Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.
(b) Read the time-of-day clock.
(c) Set the time-of-day clock.

(d) Change the memory map.

8. List some differences between personal computer operating systems and mainframe
operating systems.

9. Give one reason why a closed-source proprietary operating system like Windows
should have better quality than an open-source operating system like Linux. Now
give one reason why an open-source operating system like Linux should have better
quality than a closed-source proprietary operating system like Windows.

10. A MINIX file whose owner has UID = 12 and GID = 1 has mode rwxr-x---. Another
user with UID = 6, GID = 1 tries to execute the file. What will happen?
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11. In view of the fact that the mere existence of a superuser can lead to all kinds of
security problems, why does such a concept exist?

12. All versions of UNIX support file naming using both absolute paths (relative to the
root) and relative paths (relative to the working directory). Would it be possible to
dispose of one of these and just use the other? If so, which would you suggest
keeping?



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Why is the process table needed in a timesharing system? Is it also needed in
personal computer systems in which only one process exists, that process taking
over the entire machine until it is finished?

What is the essential difference between a block special file and a character special
file?

In MINIX 3 if user 2 links to a file owned by user 1, then user 1 removes the file,
what happens when user 2 tries to read the file?

Are pipes an essential facility? Would major functionality be lost if they were not
available?

Modern consumer appliances such as stereos and digital cameras often have a
display where commands can be entered and the results of entering those commands
can be viewed. These devices often have a primitive operating system inside. To
what part of a personal computer software is the command processing via the stereo
or camera's display similar to?

Windows does not have a f or k system call, yet it is able to create new processes.
Make an educated guess about the semantics of the system call Windows uses to
create new processes.

Why is the chr oot system call limited to the superuser?(Hint: Think about protection
problems.)

Examine the list of system calls in Fig. 1-9. Which call do you think is likely to
execute most quickly. Explain your answer.

Suppose that a computer can execute 1 billion instructions/sec and that a system call
takes 1000 instructions, including the trap and all the context switching. How many
system calls can the computer execute per second and still have half the CPU
capacity for running application code?

There is a mknod system call in Fig. 1-16 but there is no r mod call. Does this mean
that you have to be very, very careful about making nodes this way because there is
no way to every remove them?

Why does MINIX 3 have the program update running in the background all the time?

Does it ever make any sense to ignore the SIGALRM signal?

The client-server model is popular in distributed systems. Can it also be used in a
single-computer system?

The initial versions of the Pentium could not support a virtual machine monitor. What
essential characteristic is needed to allow a machine to be virtualizable?

Write a program (or series of programs) to test all the MINIX 3 system calls. For

each call, try various sets of parameters, including some incorrect ones, to see if they
are detected.
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28. Write a shell that is similar to Fig. 1-10 but contains enough code that it actually
works so you can test it. You might also add some features such as redirection of
input and output, pipes, and background jobs.

[ Py | NEXT
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2. Processes

We are now about to embark on a detailed study of how operating systems, in general, and
MINIX 3, in particular, are designed and constructed. The most central concept in any operating
system is the process: an abstraction of a running program. Everything else hinges on this
concept, and it is important that the operating system designer (and student) understand this
concept well.
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[Page 55 (continued)]

2.1. Introduction to Processes

All modern computers can do several things at the same time. While running a user program, a
computer can also be reading from a disk and outputting text to a screen or printer. In a
multiprogramming system, the CPU also switches from program to program, running each for
tens or hundreds of milliseconds. While, strictly speaking, at any instant of time, the CPU is
running only one program, in the course of 1 second, it may work on several programs, thus
giving the users the illusion of parallelism. Sometimes people speak of pseudoparallelism in this
context, to contrast it with the true hardware parallelism of multiprocessor systems (which have
two or more CPUs sharing the same physical memory). Keeping track of multiple, parallel
activities is hard for people to do. Therefore, operating system designers over the years have
evolved a conceptual model (sequential processes) that makes parallelism easier to deal with.
That model, its uses, and some of its consequences form the subject of this chapter.
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2.1.1. The Process Model

In this model, all the runnable software on the computer, sometimes including the operating
system, is organized into a number of sequential processes, or just processes for short. A
process is just an executing program, including the current values of the program counter,
registers, and variables. Conceptually, each process has its own virtual CPU. In reality, of course,
the real CPU switches back and forth from process to process, but to understand the system, it is
much easier to think about a collection of processes running in (pseudo) parallel, than to try to
keep track of how the CPU switches from program to program. This rapid switching back and
forth is called multiprogramming, as we saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memory. In Fig. 2-1(b) we
see four processes, each with its own flow of control (i.e., its own program counter), and each
one running independently of the other ones. Of course, there is only one physical program
counter, so when each process runs, its logical program counter is loaded into the real program
counter. When it is finished for the time being, the physical program counter is saved in the
process' logical program counter in memory. In Fig. 2-1(c) we see that viewed over a long
enough time interval, all the processes have made progress, but at any given instant only one
process is actually running.

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only one
program is active at any instant.

[View full size image]




With the CPU switching back and forth among the processes, the rate at which a process
performs its computation will not be uniform, and probably not even reproducible if the same
processes are run again. Thus, processes must not be programmed with built-in assumptions
about timing. Consider, for example, an 1/0 process that starts a streamer tape to restore backed
up files, executes an idle loop 10,000 times to let it get up to speed, and then issues a command
to read the first record. If the CPU decides to switch to another process during the idle loop, the
tape process might not run again until after the first record was already past the read head. When
a process has critical real-time requirements like this, that is, particular events must occur within
a specified number of milliseconds, special measures must be taken to ensure that they do occur.
Normally, however, most processes are not affected by the underlying multiprogramming of the
CPU or the relative speeds of different processes.
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The difference between a process and a program is subtle, but crucial. An analogy may help make
this point clearer. Consider a culinary-minded computer scientist who is baking a birthday cake for
his daughter. He has a birthday cake recipe and a kitchen well stocked with the necessary input:
flour, eggs, sugar, extract of vanilla, and so on. In this analogy, the recipe is the program (i.e., an
algorithm expressed in some suitable notation), the computer scientist is the processor (CPU),
and the cake ingredients are the input data. The process is the activity consisting of our baker
reading the recipe, fetching the ingredients, and baking the cake.

Now imagine that the computer scientist's son comes running in crying, saying that he has been
stung by a bee. The computer scientist records where he was in the recipe (the state of the
current process is saved), gets out a first aid book, and begins following the directions in it. Here
we see the processor being switched from one process (baking) to a higher priority process
(administering medical care), each having a different program (recipe vs. first aid book). When
the bee sting has been taken care of, the computer scientist goes back to his cake, continuing at
the point where he left off.

The key idea here is that a process is an activity of some kind. It has a program, input, output,
and a state. A single processor may be shared among several processes, with some scheduling
algorithm being used to determine when to stop work on one process and service a different one.

2.1.2. Process Creation

Operating systems need some way to make sure all the necessary processes exist. In very simple
systems, or in systems designed for running only a single application (e.g., controlling a device in
real time), it may be possible to have all the processes that will ever be needed be present when
the system comes up. In general-purpose systems, however, some way is needed to create and
terminate processes as needed during operation. We will now look at some of the issues.



There are four principal events that cause processes to be created:

1. Systeminitialization.

2. Execution of a process creation system call by a running
process.

3. A user request to create a new process.

4. Initiation of a batch job.
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When an operating system is booted, often several processes are created. Some of these are
foreground processes, that is, processes that interact with (human) users and perform work for
them. Others are background processes, which are not associated with particular users, but
instead have some specific function. For example, a background process may be designed to
accept incoming requests for web pages hosted on that machine, waking up when a request
arrives to service the request. Processes that stay in the background to handle some activity such
as web pages, printing, and so on are called daemons. Large systems commonly have dozens of
them. In MINIX 3, the ps program can be used to list the running processes.

In addition to the processes created at boot time, new processes can be created afterward as
well. Often a running process will issue system calls to create one or more new processes to help
it do its job. Creating new processes is particularly useful when the work to be done can easily be
formulated in terms of several related, but otherwise independent interacting processes. For
example, when compiling a large program, the make program invokes the C compiler to convert
source files to object code, and then it invokes the install program to copy the program to its
destination, set ownership and permissions, etc. In MINIX 3, the C compiler itself is actually
several different programs, which work together. These include a preprocessor, a C language
parser, an assembly language code generator, an assembler, and a linker.

In interactive systems, users can start a program by typing a command. In MINIX 3, virtual
consoles allow a user to start a program, say a compiler, and then switch to an alternate console
and start another program, perhaps to edit documentation while the compiler is running.

The last situation in which processes are created applies only to the batch systems found on large
mainframes. Here users can submit batch jobs to the system (possibly remotely). When the
operating system decides that it has the resources to run another job, it creates a new process
and runs the next job from the input queue in it.

Technically, in all these cases, a new process is created by having an existing process execute a
process creation system call. That process may be a running user process, a system process
invoked from the keyboard or mouse, or a batch manager process. What that process does is
execute a system call to create the new process. This system call tells the operating system to
create a new process and indicates, directly or indirectly, which program to run in it.

In MINIX 3, there is only one system call to create a new process: f or k. This call creates an exact
clone of the calling process. After the f or k, the two processes, the parent and the child, have the
same memory image, the same environment strings, and the same open files. That is all there is.
Usually, the child process then executes execve or a similar system call to change its memory
image and run a new program. For example, when a user types a command, say, sort, to the
shell, the shell forks off a child process and the child executes sort. The reason for this two-step
process is to allow the child to manipulate its file descriptors after the f or k but before the execve
to accomplish redirection of standard input, standard output, and standard error.
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In both MINIX 3 and UNIX, after a process is created both the parent and child have their own
distinct address spaces. If either process changes a word in its address space, the change is not
visible to the other process. The child's initial address space is a copy of the parent's, but there
are two distinct address spaces involved; no writable memory is shared (like some UNIX
implementations, MINIX 3 can share the program text between the two since that cannot be
modified). It is, however, possible for a newly created process to share some of its creator's other
resources, such as open files.

2.1.3. Process Termination

After a process has been created, it starts running and does whatever its job is. However, nothing
lasts forever, not even processes. Sooner or later the new process will terminate, usually due to
one of the following conditions:

1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).

4. Killed by another process
(involuntary).

Most processes terminate because they have done their work. When a compiler has compiled the
program given to it, the compiler executes a system call to tell the operating system that it is
finished. This call is exi t in MINIX 3. Screen-oriented programs also support voluntary
termination. For instance, editors always have a key combination that the user can invoke to tell
the process to save the working file, remove any temporary files that are open and terminate.

The second reason for termination is that the process discovers a fatal error. For example, if a
user types the command

cc foo.c

to compile the program foo.c and no such file exists, the compiler simply exits.

The third reason for termination is an error caused by the process, perhaps due to a program
bug. Examples include executing an illegal instruction, referencing nonexistent memory, or
dividing by zero. In MINIX 3, a process can tell the operating system that it wishes to handle
certain errors itself, in which case the process is signaled (interrupted) instead of terminated
when one of the errors occurs.

The fourth reason a process might terminate is that one process executes a system call telling the
operating system to kill some other process. In MINIX 3, this call is ki | | . Of course, the Killer
must have the necessary authorization to do in the killee. In some systems, when a process
terminates, either voluntarily or otherwise, all processes it created are immediately killed as well.
MINIX 3 does not work this way, however.
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2.1.4. Process Hierarchies

In some systems, when a process creates another process, the parent and child continue to be
associated in certain ways. The child can itself create more processes, forming a process
hierarchy. Unlike plants and animals that use sexual reproduction, a process has only one parent
(but zero, one, two, or more children).

In MINIX 3, a process, its children, and further descendants together may form a process group.
When a user sends a signal from the keyboard, the signal may be delivered to all members of the
process group currently associated with the keyboard (usually all processes that were created in
the current window). This is signal-dependent. If a signal is sent to a group, each process can
catch the signal, ignore the signal, or take the default action, which is to be killed by the signal.

As a simple example of how process trees are used, let us look at how MINIX 3 initializes itself.
Two special processes, the reincarnation server and init are present in the boot image. The
reincarnation server's job is to (re)start drivers and servers. It begins by blocking, waiting for a
message telling it what to create.

In contrast, init executes the /etc/rc script that causes it to issue commands to the reincarnation
server to start the drivers and servers not present in the boot image. This procedure makes the
drivers and servers so started children of the reincarnation server, so if any of them ever
terminate, the reincarnation server will be informed and can restart (i.e., reincarnate) them
again. This mechanism is intended to allow MINIX 3 to tolerate a driver or server crash because a
new one will be started automatically. In practice, replacing a driver is much easier than replacing
a server, however, since there fewer repercussions elsewhere in the system. (And, we do not say
this always works perfectly; it is still work in progress.)

When init has finished this, it reads a configuration file /etc/ttytab) to see which terminals and
virtual terminals exist. Init f or ks a getty process for each one, displays a login prompt on it, and
then waits for input. When a name is typed, getty execs a login process with the name as its
argument. If the user succeeds in logging in, login will exec the user's shell. So the shell is a child
of init. User commands create children of the shell, which are grandchildren of init. This sequence
of events is an example of how process trees are used. As an aside, the code for the reincarnation
server and init is not listed in this book; neither is the shell. The line had to be drawn somewhere.
But now you have the basic idea.

2.1.5. Process States

Although each process is an independent entity, with its own program counter registers, stack,
open files, alarms, and other internal state, processes often need to interact, communicate, and
synchronize with other processes. One process may generate some output that another process
uses as input, for example. In that case, the data needs to be moved between processes. In the
shell command
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cat chapterl chapter2 chapter3 | grep tree



the first process, running cat, concatenates and outputs three files. The second process, running
grep, selects all lines containing the word "tree.” Depending on the relative speeds of the two
processes (which depends on both the relative complexity of the programs and how much CPU
time each one has had), it may happen that grep is ready to run, but there is no input waiting for
it. It must then block until some input is available.

When a process blocks, it does so because logically it cannot continue, typically because it is
waiting for input that is not yet available. It is also possible for a process that is conceptually
ready and able to run to be stopped because the operating system has decided to allocate the
CPU to another process for a while. These two conditions are completely different. In the first
case, the suspension is inherent in the problem (you cannot process the user's command line until
it has been typed). In the second case, it is a technicality of the system (not enough CPUs to give
each process its own private processor). In Fig. 2-2 we see a state diagram showing the three
states a process may be in:

1. Running (actually using the CPU at that instant).

2. Ready (runnable; temporarily stopped to let another process
run).

3. Blocked (unable to run until some external event happens).

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Logically, the first two states are similar. In both cases the process is willing to run, only in the
second one, there is temporarily no CPU available for it. The third state is different from the first
two in that the process cannot run, even if the CPU has nothing else to do.

Four transitions are possible among these three states, as shown. Transition 1 occurs when a
process discovers that it cannot continue. In some systems the process must execute a system
call, bl ock or pause to get into blocked state. In other systems, including MINIX 3, when a process
reads from a pipe or special file (e.g., a terminal) and there is no input available, the process is
automatically moved from the running state to the blocked state.
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Transitions 2 and 3 are caused by the process scheduler, a part of the operating-system, without
the process even knowing about them. Transition 2 occurs when the scheduler decides that the
running process has run long enough, and it is time to let another process have some CPU time.
Transition 3 occurs when all the other processes have had their fair share and it is time for the
first process to get the CPU to run again. The subject of schedulingdeciding which process should



run when and for how longis an important one. Many algorithms have been devised to try to
balance the competing demands of efficiency for the system as a whole and fairness to individual
processes. We will look at scheduling and study some of these algorithms later in this chapter.

Transition 4 occurs when the external event for which a process was waiting (e.g., the arrival of
some input) happens. If no other process is running then, transition 3 will be triggered
immediately, and the process will start running. Otherwise it may have to wait in ready state for a
little while until the CPU is available.

Using the process model, it becomes much easier to think about what is going on inside the
system. Some of the processes run programs that carry out commands typed in by a user. Other
processes are part of the system and handle tasks such as carrying out requests for file services
or managing the details of running a disk or a tape drive. When a disk interrupt occurs, the
system may make a decision to stop running the current process and run the disk process, which
was blocked waiting for that interrupt. We say "may" because it depends upon relative priorities
of the running process and the disk driver process. But the point is that instead of thinking about
interrupts, we can think about user processes, disk processes, terminal processes, and so on,
which block when they are waiting for something to happen. When the disk block has been read
or the character typed, the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of the operating system
is the scheduler, with a variety of processes on top of it. All the interrupt handling and details of
actually starting and stopping processes are hidden away in the scheduler, which is actually quite
small. The rest of the operating system is nicely structured in process form. The model of Fig. 2-3
is used in MINIX 3. Of course, the "scheduler" is not the only thing in the lowest layer, there is
also support for interrupt handling and interprocess communication. Nevertheless, to a first
approximation, it does show the basic structure.

Figure 2-3. The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are sequential
processes.

(This item is displayed on page 63 in the print version)

FProcesses

Scheduler

2.1.6. Implementation of Processes

To implement the process model, the operating system maintains a table (an array of structures),
called the process table, with one entry per process. (Some authors call these entries process
control blocks.) This entry contains information about the process' state, its program counter,
stack pointer, memory allocation, the status of its open files, its accounting and scheduling
information, alarms and other signals, and everything else about the process that must be saved



when the process is switched from running to ready state so that it can be restarted later as if it

had never been stopped.
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In MINIX 3, interprocess communication, memory management, and file management are each
handled by separate modules within the system, so the process table is partitioned, with each
module maintaining the fields that it needs. Figure 2-4 shows some of the more important fields.
The fields in the first column are the only ones relevant to this chapter. The other two columns
are provided just to give an idea of what information is needed elsewhere in the system.

Figure 2-4. Some of the fields of the MINIX 3 process table.
The fields are distributed over the kernel, the process
manager, and the file system.

Kernel

Registers

Program counter
Program status word
Stack pointer
Process state

Current scheduling
priority

Maximum scheduling
priority

Scheduling ticks left
Quantum size

CPU time used

Message queue
pointers

Pending signal bits
Various flag bits

Process name

Process management
Pointer to text segment
Pointer to data segment
Pointer to bss segment
Exit status

Signal status

Process ID

Parent process

Process group
Children's CPU time

Real UID

Effective UID

Real GID

Effective GID

File info for sharing text
Bitmaps for signals
Various flag bits

Process name

File management
UMASK mask

Root directory
Working directory
File descriptors
Real id

Effective UID

Real GID

Effective GID
Controlling tty

Save area for
read/write

System call
parameters

Various flag bits
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Now that we have looked at the process table, it is possible to explain a little more about how the
illusion of multiple sequential processes is maintained on a machine with one CPU and many 1/0
devices. What follows is technically a description of how the "scheduler™ of Fig. 2-3 works in
MINIX 3 but most modern operating systems work essentially the same way. Associated with
each 1/0 device class (e.g., floppy disks, hard disks, timers, terminals) is a data structure in a
table called the interrupt descriptor table. The most important part of each entry in this table
is called the interrupt vector. It contains the address of the interrupt service procedure.
Suppose that user process 23 is running when a disk interrupt occurs. The program counter,
program status word, and possibly one or more registers are pushed onto the (current) stack by
the interrupt hardware. The computer then jumps to the address specified in the disk interrupt
vector. That is all the hardware does. From here on, it is up to the software.

The interrupt service procedure starts out by saving all the registers in the process table entry for
the current process. The current process number and a pointer to its entry are kept in global
variables so they can be found quickly. Then the information deposited by the interrupt is
removed from the stack, and the stack pointer is set to a temporary stack used by the process
handler. Actions such as saving the registers and setting the stack pointer cannot even be
expressed in high-level languages such as C, so they are performed by a small assembly
language routine. When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type.

Interprocess communication in MINIX 3 is via messages, so the next step is to build a message to
be sent to the disk process, which will be blocked waiting for it. The message says that an
interrupt occurred, to distinguish it from messages from user processes requesting disk blocks to
be read and things like that. The state of the disk process is now changed from blocked to ready
and the scheduler is called. In MINIX 3, different processes have different priorities, to give better
service to 1/0 device handlers than to user processes, for example. If the disk process is now the
highest priority runnable process, it will be scheduled to run. If the process that was interrupted is
just as important or more so, then it will be scheduled to run again, and the disk process will have
to wait a little while.

Either way, the C procedure called by the assembly language interrupt code now returns, and the
assembly language code loads up the registers and memory map for the now-current process and
starts it running. Interrupt handling and scheduling are summarized in Fig. 2-5. It is worth noting
that the details vary slightly from system to system.

Figure 2-5. Skeleton of what the lowest level of
the operating system does when an interrupt
occurs.

(This item is displayed on page 65 in the print version)



1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. Cinterrupt service constructs and sends message.

6. Message passing code marks waiting message recipient ready.

7. Scheduler decides which process is to run next.
8. C procedure returns to the assembly code.

9. Assembly language procedure starts up new current process.

2.1.7. Threads

In traditional operating systems, each process has an address space and a single thread of
control. In fact, that is almost the definition of a process. Nevertheless, there are often situations
in which it is desirable to have multiple threads of control in the same address space running in
quasi-parallel, as though they were separate processes (except for the shared address space).
These threads of control are usually just called threads, although some people call them
lightweight processes.
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One way of looking at a process is that it is a way to group related resources together. A process
has an address space containing program text and data, as well as other resources. These
resources may include open files, child processes, pending alarms, signal handlers, accounting
information, and more. By putting them together in the form of a process, they can be managed
more easily.

The other concept a process has is a thread of execution, usually shortened to just thread. The
thread has a program counter that keeps track of which instruction to execute next. It has
registers, which hold its current working variables. It has a stack, which contains the execution
history, with one frame for each procedure called but not yet returned from. Although a thread
must execute in some process, the thread and its process are different concepts and can be
treated separately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take place in the same
process environment, to a large degree independent of one another. In Fig. 2-6(a) we see three
traditional processes. Each process has its own address space and a single thread of control. In
contrast, in Fig. 2-6(b) we see a single process with three threads of control. Although in both
cases we have three threads, in Fig. 2-6(a) each of them operates in a different address space,
whereas in Fig. 2-6(b) all three of them share the same address space.



Figure 2-6. (a) Three processes each with one thread. (b) One process
with three threads.

(This item is displayed on page 66 in the print version)

[View full size image]

As an example of where multiple threads might be used, consider a web browser process. Many
web pages contain multiple small images. For each image on a web page, the browser must set
up a separate connection to the page's home site and request the image. A great deal of time is
spent establishing and releasing all these connections. By having multiple threads within the
browser, many images can be requested at the same time, greatly speeding up performance in

most cases since with small images, the set-up time is the limiting factor, not the speed of the
transmission line.
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When multiple threads are present in the same address space, a few of the fields of Fig. 2-4 are
not per process, but per thread, so a separate thread table is needed, with one entry per thread.
Among the per-thread items are the program counter, registers, and state. The program counter
is needed because threads, like processes, can be suspended and resumed. The registers are
needed because when threads are suspended, their registers must be saved. Finally, threads, like

processes, can be in running, ready, or blocked state. Fig. 2-7 lists some per-process and per-
thread items.

Figure 2-7. The first column lists
some items shared by all threads in
a process. The second one lists
some items private to each thread.

Per process items Per thread items
Address space Program counter

Global variables Registers



Per process items Per thread items
Open files Stack

Child processes State

Pending alarms

Signals and signal
handlers

Accounting
information

In some systems, the operating system is not aware of the threads. In other words, they are
managed entirely in user space. When a thread is about to block, for example, it chooses and
starts its successor before stopping. Several userlevel threads packages are in common use,

including the POSIX P-threads and Mach C-threads packages.
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In other systems, the operating system is aware of the existence of multiple threads per process,

so when a thread blocks, the operating system chooses the next one to run, either from the same
process or a different one. To do scheduling, the kernel must have a thread table that lists all the

threads in the system, analogous to the process table.

Although these two alternatives may seem equivalent, they differ considerably in performance.
Switching threads is much faster when thread management is done in user space than when a
system call is needed. This fact argues strongly for doing thread management in user space. On
the other hand, when threads are managed entirely in user space and one thread blocks (e.g.,
waiting for 1/0 or a page fault to be handled), the kernel blocks the entire process, since it is not
even aware that other threads exist. This fact as well as others argue for doing thread
management in the kernel (Boehm, 2005). As a consequence, both systems are in use, and
various hybrid schemes have been proposed as well (Anderson et al., 1992).

No matter whether threads are managed by the kernel or in user space, they introduce a raft of
problems that must be solved and which change the programming model appreciably. To start
with, consider the effects of the f or k system call. If the parent process has multiple threads,
should the child also have them? If not, the process may not function properly, since all of them
may be essential.

However, if the child process gets as many threads as the parent, what happens if a thread was
blocked on a read call, say, from the keyboard? Are two threads now blocked on the keyboard?
When a line is typed, do both threads get a copy of it? Only the parent? Only the child? The same
problem exists with open network connections.

Another class of problems is related to the fact that threads share many data structures. What
happens if one thread closes a file while another one is still reading from it? Suppose that one
thread notices that there is too little memory and starts allocating more memory. Then, part way
through, a thread switch occurs, and the new thread also notices that there is too little memory
and also starts allocating more memory. Does the allocation happen once or twice? In nearly all
systems that were not designed with threads in mind, the libraries (such as the memory
allocation procedure) are not reentrant, and will crash if a second call is made while the first one
is still active.



Another problem relates to error reporting. In UNIX, after a system call, the status of the call is
put into a global variable, errno. What happens if a thread makes a system call, and before it is
able to read errno, another thread makes a system call, wiping out the original value?

Next, consider signals. Some signals are logically thread specific; others are not. For example, if a
thread calls al ar m it makes sense for the resulting signal to go to the thread that made the call.
When the kernel is aware of threads, it can usually make sure the right thread gets the signal.
When the kernel is not aware of threads, the threads package must keep track of alarms by itself.
An additional complication for user-level threads exists when (as in UNIX) a process may only
have one alarm at a time pending and several threads call al ar mindependently.
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Other signals, such as a keyboard-initiated SIGINT, are not thread specific. Who should catch
them? One designated thread? All the threads? A newly created thread? Each of these solutions
has problems. Furthermore, what happens if one thread changes the signal handlers without
telling other threads?

One last problem introduced by threads is stack management. In many systems, when stack
overflow occurs, the kernel just provides more stack, automatically. When a process has multiple
threads, it must also have multiple stacks. If the kernel is not aware of all these stacks, it cannot
grow them automatically upon stack fault. In fact, it may not even realize that a memory fault is
related to stack arowth.

=3 NEXT
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2.2. Interprocess Communication

Processes frequently need to communicate with other processes. For example, in a shell pipeline,
the output of the first process must be passed to the second process, and so on down the line.
Thus there is a need for communication between processes, preferably in a well-structured way
not using interrupts. In the following sections we will look at some of the issues related to this
InterProcess Communication or IPC .

There are three issues here. The first was alluded to above: how one process can pass
information to another. The second has to do with making sure two or more processes do not get
into each other's way when engaging in critical activities (suppose two processes each try to grab
the last 1 MB of memory). The third concerns proper sequencing when dependencies are present:
if process A produces data and process B prints it, B has to wait until A has produced some data
before starting to print. We will examine all three of these issues in some detail in this section.

It is also important to mention that two of these issues apply equally well to threads. The first
onepassing informationis easy for threads since they share a common address space (threads in
different address spaces that need to communicate fall under the heading of communicating
processes). However, the other twokeeping out of each other's hair and proper sequencingapply
as well to threads. The same problems exist and the same solutions apply. Below we will discuss
the problem in the context of processes, but please keep in mind that the same problems and
solutions also apply to threads.

[Page 69]

2.2.1. Race Conditions

In some operating systems, processes that are working together may share some common
storage that each one can read and write. The shared storage may be in main memory (possibly
in a kernel data structure) or it may be a shared file; the location of the shared memory does not
change the nature of the communication or the problems that arise. To see how interprocess
communication works in practice, let us consider a simple but common example, a print spooler.
When a process wants to print a file, it enters the file name in a special spooler directory .
Another process, the printer daemon , periodically checks to see if so are any files to be printed,
and if so removes their names from the directory.

Imagine that our spooler directory has a large number of slots, numbered O, 1, 2, ..., each one
capable of holding a file name. Also imagine that there are two shared variables, out , which
points to the next file to be printed, and in , which points to the next free slot in the directory.
These two variables might well be kept in a two-word file available to all processes. At a certain
instant, slots O to 3 are empty (the files have already been printed) and slots 4 to 6 are full (with
the names of files to be printed). More or less simultaneously, processes A and B decide they
want to queue a file for printing. This situation is shown in Fig. 2-8 .

Figure 2-8. Two processes want to access shared memory at the same
time.



In jurisdictions where Murphy's lawl 1is applicable, the following might well happen. Process A
reads in and stores the value, 7, in a local variable called next_free_slot . Just then a clock
interrupt occurs and the CPU decides that process A has run long enough, so it switches to
process B . Process B also reads in , and also gets a 7, so it stores the name of its file in slot 7
and updates in to be an 8. Then it goes off and does other things.

[ T1f something can go wrong, it will.
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Eventually, process A runs again, starting from the place it left off last time. It looks at
next_free_slot, finds a 7 there, and writes its file name in slot 7, erasing the name that process B
just put there. Then it computes next_free_slot + 1, which is 8, and sets in to 8. The spooler
directory is now internally consistent, so the printer daemon will not notice anything wrong, but
process B will never receive any output. User B will hang around the printer room for years,
wistfully hoping for output that never comes. Situations like this, where two or more processes
are reading or writing some shared data and the final result depends on who runs precisely when,
are called race conditions . Debugging programs containing race conditions is no fun at all. The
results of most test runs are fine, but once in a blue moon something weird and unexplained
happens.

2.2.2. Critical Sections

How do we avoid race conditions? The key to preventing trouble here and in many other
situations involving shared memory, shared files, and shared everything else is to find some way
to prohibit more than one process from reading and writing the shared data at the same time. Put
in other words, what we need is mutual exclusion some way of making sure that if one process
is using a shared variable or file, the other processes will be excluded from doing the same thing.
The difficulty above occurred because process B started using one of the shared variables before
process A was finished with it. The choice of appropriate primitive operations for achieving mutual
exclusion is a major design issue in any operating system, and a subject that we will now examine
in great detail.

The problem of avoiding race conditions can also be formulated in an abstract way. Part of the
time, a process is busy doing internal computations and other things that do not lead to race



conditions. However, sometimes a process may be accessing shared memory or files. That part of
the program where the shared memory is accessed is called the critical region or critical
section . If we could arrange matters such that no two processes were ever in their critical
regions at the same time, we could avoid race conditions.

Although this requirement avoids race conditions, this is not sufficient for having parallel
processes cooperate correctly and efficiently using shared data. We need four conditions to hold
to have a good solution:

1.

No two processes may be simultaneously inside their critical regions.

2.
No assumptions may be made about speeds or the number of CPUs.

3.
No process running outside its critical region may block other processes.

4.
No process should have to wait forever to enter its critical region.
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The behavior that we want is shown in Fig. 2-9 . Here process A enters its critical region at time T
1 . A little later, at time T  process B attempts to enter its critical region but fails because another
process is already in its critical region and we allow only one at a time. Consequently, B is
temporarily suspended until time T 3 when A leaves its critical region, allowing B to enter
immediately. Eventually B leaves (at T 4 ) and we are back to the original situation with no
processes in their critical regions.

Figure 2-9. Mutual exclusion using critical regions.

[View full size image]

2.2.3. Mutual Exclusion with Busy Waiting



In this section we will examine various proposals for achieving mutual exclusion, so that while one
process is busy updating shared memory in its critical region, no other process will enter its
critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after entering its critical
region and reenable them just before leaving it. With interrupts disabled, no clock interrupts can
occur. The CPU is only switched from process to process as a result of clock or other interrupts,
after all, and with interrupts turned off the CPU will not be switched to another process. Thus,
once a process has disabled interrupts, it can examine and update the shared memory without
fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user processes the power to
turn off interrupts. Suppose that one of them did, and then never turned them on again? That
could be the end of the system. Furthermore, if the system is a multiprocessor, with two or more
CPUs, disabling interrupts affects only the CPU that executed the disable instruction. The other
ones will continue running and can access the shared memory.
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On the other hand, it is frequently convenient for the kernel itself to disable interrupts for a few
instructions while it is updating variables or lists. If an interrupt occurred while the list of ready
processes, for example, was in an inconsistent state, race conditions could occur. The conclusion
is: disabling interrupts is often a useful technique within the operating system itself but is not
appropriate as a general mutual exclusion mechanism for user processes.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a single, shared, (lock)
variable, initially 0. When a process wants to enter its critical region, it first tests the lock. If the
lock is 0, the process sets it to 1 and enters the critical region. If the lock is already 1, the process
just waits until it becomes 0. Thus, a 0 means that no process is in its critical region, and a 1
means that some process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in the spooler directory.
Suppose that one process reads the lock and sees that it is 0. Before it can set the lock to 1,
another process is scheduled, runs, and sets the lock to 1. When the first process runs again, it
will also set the lock to 1, and two processes will be in their critical regions at the same time.

Now you might think that we could get around this problem by first reading out the lock value,
then checking it again just before storing into it, but that really does not help. The race now
occurs if the second process modifies the lock just after the first process has finished its second
check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-10 . This program fragment,
like most others in this book, is written in C. C was chosen here because real operating systems
are commonly written in C (or occasionally C++), but hardly ever in languages like Java. C is
powerful, efficient, and predictable, characteristics critical for writing operating systems. Java, for
example, is not predictable because it might run out of storage at a critical moment and need to
invoke the garbage collector at a most inopportune time. This cannot happen in C because there
is no garbage collection in C. A quantitative comparison of C, C++, Java, and four other



languages is given by Prechelt (2000 ).

Figure 2-10. A proposed solution to the critical region problem. (a)
Process 0. (b) Process 1. In both cases, be sure to note the semicolons
terminating the whi | e statements.

(This item is displayed on page 73 in the print version)

whi |l e (TRUE) { while (TRUE) {
while(turn !'= 0) /* | oop* /; while(turn = 1) /* 1oop* /;
critical _region(); critical _region();
turn = 1, turn = 0,
noncritical _region(); noncritical _region();
} }

(a) (b)

In Fig. 2-10, the integer variable turn , initially O, keeps track of whose turn it is to enter the
critical region and examine or update the shared memory. Initially, process O inspects turn , finds
it to be O, and enters its critical region. Process 1 also finds it to be O and therefore sits in a tight
loop continually testing turn to see when it becomes 1. Continuously testing a variable until some
value appears is called busy waiting . It should usually be avoided, since it wastes CPU time.
Only when there is a reasonable expectation that the wait will be short is busy waiting used. A
lock that uses busy waiting is called a spin lock .
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When process O leaves the critical region, it sets turn to 1, to allow process 1 to enter its critical
region. Suppose that process 1 finishes its critical region quickly, so both processes are in their
noncritical regions, with turn set to 0. Now process O executes its whole loop quickly, exiting its
critical region and setting turn to 1. At this point turn is 1 and both processes are executing in
their noncritical regions.

Suddenly, process 0 finishes its noncritical region and goes back to the top of its loop.
Unfortunately, it is not permitted to enter its critical region now, because turn is 1 and process 1
is busy with its noncritical region. It hangs in its whi | e loop until process 1 sets turn to 0. Put
differently, taking turns is not a good idea when one of the processes is much slower than the
other.

This situation violates condition 3 set out above: process O is being blocked by a process not in its
critical region. Going back to the spooler directory discussed above, if we now associate the
critical region with reading and writing the spooler directory, process 0 would not be allowed to
print another file because process 1 was doing something else.

In fact, this solution requires that the two processes strictly alternate in entering their critical
regions, for example, in spooling files. Neither one would be permitted to spool two in a row.
While this algorithm does avoid all races, it is not really a serious candidate as a solution because
it violates condition 3.

Peterson's Solution

By combining the idea of taking turns with the idea of lock variables and warning variables, a
Dutch mathematician, T. Dekker, was the first one to devise a software solution to the mutual
exclusion problem that does not require strict alternation. For a discussion of Dekker's algorithm,



see Dijkstra (1965 ).
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In 1981, G.L. Peterson discovered a much simpler way to achieve mutual exclusion, thus
rendering Dekker's solution obsolete. Peterson's algorithm is shown in Fig. 2-11 . This algorithm
consists of two procedures written in ANSI C, which means that function prototypes should be
supplied for all the functions defined and used. However, to save space, we will not show the
prototypes in this or subsequent examples.

Figure 2-11. Peterson's solution for achieving mutual exclusion.

#defi ne FALSE 0O
#define TRUE 1

#define N 2 /* nunber of processes */
int turn; /[* whose turn is it? */
int interested[N; /* all values initially 0 (FALSE)*/
voi d enter_region(int process) /* process is 0 or 1 */
{
i nt other; /* nunber of the other process */
other = 1 - process; /* the opposite of process */
i nterested[ process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statenent */;
}
voi d | eave_region(int process) /* process: who is |eaving */
{
i nterested[ process] = FALSE; /* indicate departure fromcritical region */
}

Before using the shared variables (i.e., before entering its critical region), each process calls
enter_region with its own process number, O or 1, as the parameter. This call will cause it to wait,
if need be, until it is safe to enter. After it has finished with the shared variables, the process calls
leave_region to indicate that it is done and to allow the other process to enter, if it so desires.

Let us see how this solution works. Initially, neither process is in its critical region. Now process O
calls enter_region . It indicates its interest by setting its array element and sets turn to O. Since
process 1 is not interested, enter_region returns immediately. If process 1 now calls enter_region
, it will hang there until interested [0] goes to FALSE , an event that only happens when process O
calls leave_region to exit the critical region.

Now consider the case that both processes call enter_region almost simultaneously. Both will
store their process number in turn . Whichever store is done last is the one that counts; the first
one is lost. Suppose that process 1 stores last, so turn is 1. When both processes come to the
whi | e statement, process O executes it zero times and enters its critical region. Process 1 loops
and does not enter its critical region.
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The TSL Instruction



Now let us look at a proposal that requires a little help from the hardware. Many computers,
especially those designed with multiple processors in mind, have an instruction

TSL RX, LOCK

(Test and Set Lock) that works as follows: it reads the contents of the memory word LOCK into
register RX and then stores a nonzero value at the memory address LOCK . The operations of
reading the word and storing into it are guaranteed to be indivisibleno other processor can access
the memory word until the instruction is finished. The CPU executing the TSL instruction locks the
memory bus to prohibit other CPUs from accessing memory until it is done.

To use the TSL instruction, we will use a shared variable, LOCK , to coordinate access to shared
memory. When LOCK is 0, any process may set it to 1 using the TSL instruction and then read or
write the shared memory. When it is done, the process sets LOCK back to 0 using an ordinary
nove instruction.

How can this instruction be used to prevent two processes from simultaneously entering their
critical regions? The solution is given in Fig. 2-12 . There a four-instruction subroutine in a
fictitious (but typical) assembly language is shown. The first instruction copies the old value of
LOCK to the register and then sets LOCK to 1. Then the old value is compared with 0. If it is
nonzero, the lock was already set, so the program just goes back to the beginning and tests it
again. Sooner or later it will become O (when the process currently in its critical region is done
with its critical region), and the subroutine returns, with the lock set. Clearing the lock is simple.
The program just stores a 0 in LOCK. No special instructions are needed.

Figure 2-12. Entering and leaving a critical region using the TSL
instruction.

enter_region:

TSL REQ STER, LOCK | copy LOCK to register and set LOCK to 1
CWP REGQ STER, #0 | was LOCK zero0?

JNE ENTER_REG ON |if it was non zero, LOCK was set, so |oop
RET |return to caller; critical region entered

| eave_regi on:

MOVE LOCK, #0 | store a 0 in LOCK
RET | return to caller
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One solution to the critical region problem is now straightforward. Before entering its critical
region, a process calls enter_region , which does busy waiting until the lock is free; then it
acquires the lock and returns. After the critical region the process calls leave_region , which
stores a 0 in LOCK . As with all solutions based on critical regions, the processes must call
enter_region and leave_region at the correct times for the method to work. If a process cheats,
the mutual exclusion will fail.

2.2.4. Sleep and Wakeup



Both Peterson's solution and the solution using TSL are correct, but both have the defect of
requiring busy waiting. In essence, what these solutions do is this: when a process wants to enter
its critical region, it checks to see if the entry is allowed. If it is not, the process just sits in a tight
loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected effects. Consider a
computer with two processes, H , with high priority and L , with low priority, which share a critical
region. The scheduling rules are such that H is run whenever it is in ready state. At a certain
moment, with L in its critical region, H becomes ready to run (e.g., an 1/0 operation completes).
H now begins busy waiting, but since L is never scheduled while H is running, L never gets the
chance to leave its critical region, so H loops forever. This situation is sometimes referred to as
the priority inversion problem .

Now let us look at some interprocess communication primitives that block instead of wasting CPU
time when they are not allowed to enter their critical regions. One of the simplest is the pair sl eep
and wakeup . sl eep is a system call that causes the caller to block, that is, be suspended until
another process wakes it up. The wakeup call has one parameter, the process to be awakened.
Alternatively, both sl eep and wakeup each have one parameter, a memory address used to match
up sl eep s with wakeup s.

The Producer-Consumer Problem

As an example of how these primitives can be used in practice, let us consider the producer-
consumer problem (also known as the bounded buffer problem). Two processes share a
common, fixed-size buffer. One of them, the producer, puts information into the buffer, and the
other one, the consumer, takes it out. (It is also possible to generalize the problem to have m
producers and n consumers, but we will only consider the case of one producer and one consumer
because this assumption simplifies the solutions).

Trouble arises when the producer wants to put a new item in the buffer, but it is already full. The
solution is for the producer to go to sleep, to be awakened when the consumer has removed one
or more items. Similarly, if the consumer wants to remove an item from the buffer and sees that
the buffer is empty, it goes to sleep until the producer puts something in the buffer and wakes it

up.
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This approach sounds simple enough, but it leads to the same kinds of race conditions we saw
earlier with the spooler directory. To keep track of the number of items in the buffer, we will need
a variable, count . If the maximum number of items the buffer can hold is N , the producer's code
will first test to see if count is N . If it is, the producer will go to sleep; if it is not, the producer will
add an item and increment count .

The consumer's code is similar: first test count to see if it is O. If it is, go to sleep; if it is nonzero,
remove an item and decrement the counter. Each of the processes also tests to see if the other
should be sleeping, and if not, wakes it up. The code for both producer and consumer is shown in
Fig. 2-13 .

Figure 2-13. The producer-consumer problem with a fatal race
condition.

[View full width]
#define N 100 /* nunber of slots in the buffe
int count = O; /* nunber of itens in the buffe



voi d producer (void)

{

i nt

whi |

item

e (TRUE){

item = produce_item();

if (count

== N) sleep();

insert_itemitem;

count =
if (count

voi d consuner (voi d)

count + 1;

== 1) wakeup(consuner);

== 0) sleep();

item= renove_iten();

count 1;

==N 1) wakeup(producer);

consune_iten(item;

{
int item
whi | e (TRUE){
if (count
count =
buffer */
i f (count
}
}

/

/*

/* repeat forever */

/* generate next item*/

/[* if buffer is full, go to sle
/* put itemin buffer */

/* increment count of itenms in
/* was buffer enpty? */

/* repeat forever */

/* if buffer is enpty, got to sl
/* take item out of buffer */

* decrenent count of itens in

was buffer full? */
/* print item*/

To express system calls such as sl eep and wakeup in C, we will show them as calls to library
routines. They are not part of the standard C library but presumably would be available on any
system that actually had these system calls. The procedures enter_item and remove_item , which
are not shown, handle the bookkeeping of putting items into the buffer and taking items out of

the buffer.
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Now let us get back to the race condition. It can occur because access to count is unconstrained.
The following situation could possibly occur. The buffer is empty and the consumer has just read
count to see if it is 0. At that instant, the scheduler decides to stop running the consumer
temporarily and start running the producer. The producer enters an item in the buffer, increments
count , and notices that it is now 1. Reasoning that count was just O, and thus the consumer
must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is lost. When the
consumer next runs, it will test the value of count it previously read, find it to be 0, and go to
sleep. Sooner or later the producer will fill up the buffer and also go to sleep. Both will sleep

forever.

The essence of the problem here is that a wakeup sent to a process that is not (yet) sleeping is
lost. If it were not lost, everything would work. A quick fix is to modify the rules to add a wakeup
waiting bit to the picture. When a wakeup is sent to a process that is still awake, this bit is set.
Later, when the process tries to go to sleep, if the wakeup waiting bit is on, it will be turned off,
but the process will stay awake. The wakeup waiting bit is a piggy bank for wakeup signals.



While the wakeup waiting bit saves the day in this simple example, it is easy to construct
examples with three or more processes in which one wakeup waiting bit is insufficient. We could
make another patch, and add a second wakeup waiting bit, or maybe 8 or 32 of them, but in
principle the problem is still there.

2.2.5. Semaphores

This was the situation until E. W. Dijkstra (1965 ) suggested using an integer variable to count
the number of wakeups saved for future use. In his proposal, a new variable type, called a
semaphore , was introduced. A semaphore could have the value 0, indicating that no wakeups
were saved, or some positive value if one or more wakeups were pending.

Dijkstra proposed having two operations, down and up (which are generalizations of sl eep and
wakeup , respectively). The down operation on a semaphore checks to see if the value is greater
than O. If so, it decrements the value (i.e., uses up one stored wakeup) and just continues. If the
value is 0, the process is put to sleep without completing the down for the moment. Checking the
value, changing it, and possibly going to sleep is all done as a single, indivisible, atomic action .
It is guaranteed that once a semaphore operation has started, no other process can access the
semaphore until the operation has completed or blocked. This atomicity is absolutely essential to
solving synchronization problems and avoiding race conditions.

The up operation increments the value of the semaphore addressed. If one or more processes
were sleeping on that semaphore, unable to complete an earlier down operation, one of them is
chosen by the system (e.g., at random) and is allowed to complete its down . Thus, after an up on
a semaphore with processes sleeping on it, the semaphore will still be 0, but there will be one
fewer process sleeping on it. The operation of incrementing the semaphore and waking up one
process is also indivisible. No process ever blocks doing an up , just as no process ever blocks
doing a wakeup in the earlier model.
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As an aside, in Dijkstra's original paper, he used the names p and v instead of down and up ,
respectively, but since these have no mnemonic significance to people who do not speak Dutch
(and only marginal significance to those who do), we will use the terms down and up instead.
These were first introduced in Algol 68.

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-14 . It is essential that they be
implemented in an indivisible way. The normal way is to implement up and down as system calls,
with the operating system briefly disabling all interrupts while it is testing the semaphore,
updating it, and putting the process to sleep, if necessary. As all of these actions take only a few
instructions, no harm is done in disabling interrupts. If multiple CPUs are being used, each
semaphore should be protected by a lock variable, with the TSL instruction used to make sure
that only one CPU at a time examines the semaphore. Be sure you understand that using TSL to
prevent several CPUs from accessing the semaphore at the same time is quite different from busy
waiting by the producer or consumer waiting for the other to empty or fill the buffer. The
semaphore operation will only take a few microseconds, whereas the producer or consumer might
take arbitrarily long.

Figure 2-14. The producer-consumer problem using semaphores.

(This item is displayed on page 80 in the print version)



#define N 100 /* nunber of slots in the buffer */

typedef int senmaphore; /* semaphores are a special kind of int */
semaphore nmutex = 1; /* controls access to critical region */
semaphore enpty = N, /* counts enpty buffer slots */

semaphore full = 0; /* counts full buffer slots */

voi d producer (void)

{
int item
whi l e (TRUE){ /* TRUE is the constant 1 */
item = produce_item(); /* generate sonmething to put in buffer */
down( &enpty); /* decrenent enpty count */
down( &mut ex) ; /* enter critical region */
insert_item(item; /* put newitemin buffer */
up( &mut ex) ; /* leave critical region */
up(&ull); /* increnment count of full slots */
}
}
voi d consumer (voi d)
{
int item
whil e (TRUE){ /[* infinite | oop */
down( & ull); /* decrenent full count */
down( &mut ex) ; /* enter critical region */
item= renove_item); /* take item from buffer */
up( &mut ex) ; /* leave critical region */
up( &enpty); /* increment count of enpty slots */
consune_iten(item; /* do sonething with the item*/
}
}

This solution uses three semaphores: one called full for counting the number of slots that are full,
one called empty for counting the number of slots that are empty, and one called mutex to make
sure the producer and consumer do not access the buffer at the same time. Full is initially O,
empty is initially equal to the number of slots in the buffer, and mutex is initially 1. Semaphores
that are initialized to 1 and used by two or more processes to ensure that only one of them can
enter its critical region at the same time are called binary semaphores . If each process does a
down just before entering its critical region and an up just after leaving it, mutual exclusion is
guaranteed.

Now that we have a good interprocess communication primitive at our disposal, let us go back
and look at the interrupt sequence of Fig. 2-5 again. In a system-using semaphores, the natural
way to hide interrupts is to have a semaphore, initially set to O, associated with each 170 device.
Just after starting an 1/0 device, the managing process does a down on the associated
semaphore, thus blocking immediately. When the interrupt comes in, the interrupt handler then
does an up on the associated semaphore, which makes the relevant process ready to run again.
In this model, step 6 in Fig. 2-5 consists of doing an up on the device's semaphore, so that in step
7 the scheduler will be able to run the device manager. Of course, if several processes are now
ready, the scheduler may choose to run an even more important process next. We will look at
how scheduling is done later in this chapter.
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In the example of Fig. 2-14 , we have actually used semaphores in two different ways. This
difference is important enough to make explicit. The mutex semaphore is used for mutual
exclusion. It is desighed to guarantee that only one process at a time will be reading or writing
the buffer and the associated variables. This mutual exclusion is required to prevent chaos. We
will study mutual exclusion and how to achieve it more in the next section.
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The other use of semaphores is for synchronization . The full and empty semaphores are
needed to guarantee that certain event sequences do or do not occur. In this case, they ensure
that the producer stops running when the buffer is full, and the consumer stops running when it is
empty. This use is different from mutual exclusion.

2.2.6. Mutexes

When the semaphore’s ability to count is not needed, a simplified version of the semaphore,
called a mutex, is sometimes used. Mutexes are good only for managing mutual exclusion to
some shared resource or piece of code. They are easy and efficient to implement, which makes
them especially useful in thread packages that are implemented entirely in user space.

A mutex is a variable that can be in one of two states: unlocked or locked. Consequently, only 1
bit is required to represent it, but in practice an integer often is used, with O meaning unlocked
and all other values meaning locked. Two procedures are used with mutexes. When a process (or
thread) needs access to a critical region, it calls mutex_lock . If the mutex is currently unlocked
(meaning that the critical region is available), the call succeeds and the calling thread is free to
enter the critical region.

On the other hand, if the mutex is already locked, the caller is blocked until the process in the
critical region is finished and calls mutex_unlock . If multiple processes are blocked on the mutex,
one of them is chosen at random and allowed to acquire the lock.

2.2.7. Monitors

With semaphores interprocess communication looks easy, right? Forget it. Look closely at the
order of the down s before entering or removing items from the buffer in Fig. 2-14 . Suppose that
the two down s in the producer's code were reversed in order, so mutex was decremented before
empty instead of after it. If the buffer were completely full, the producer would block, with mutex
set to 0. Consequently, the next time the consumer tried to access the buffer, it would do a down
on mutex , now 0, and block too. Both processes would stay blocked forever and no more work
would ever be done. This unfortunate situation is called a deadlock . We will study deadlocks in
detail in Chap. 3 .

This problem is pointed out to show how careful you must be when using semaphores. One subtle
error and everything comes to a grinding halt. It is like programming in assembly language, only
worse, because the errors are race conditions, deadlocks, and other forms of unpredictable and
irreproducible behavior.
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To make it easier to write correct programs, Brinch Hansen (1973 ) and Hoare (1974 ) proposed
a higher level synchronization primitive called a monitor . Their proposals differed slightly, as
described below. A monitor is a collection of procedures, variables, and data structures that are all



grouped together in a special kind of module or package. Processes may call the procedures in a
monitor whenever they want to, but they cannot directly access the monitor's internal data
structures from procedures declared outside the monitor. This rule, which is common in modern
object-oriented languages such as Java, was relatively unusual for its time, although objects can
be traced back to Simula 67. Figure 2-15 illustrates a monitor written in an imaginary language,
Pidgin Pascal.

Figure 2-15. A monitor.

nmoni t or exanpl e
i nteger i;
condi tion c;

procedure producer (Xx);

end;

procedure consuner (Xx);

end;
end nonitor;

Monitors have a key property that makes them useful for achieving mutual exclusion: only one
process can be active in a monitor at any instant. Monitors are a programming language
construct, so the compiler knows they are special and can handle calls to monitor procedures
differently from other procedure calls. Typically, when a process calls a monitor procedure, the
first few instructions of the procedure will check to see if any other process is currently active
within the monitor. If so, the calling process will be suspended until the other process has left the
monitor. If no other process is using the monitor, the calling process may enter.

It is up to the compiler to implement the mutual exclusion on monitor entries, but a common way
is to use a mutex or binary semaphore. Because the compiler, not the programmer, arranges for
the mutual exclusion, it is much less likely that something will go wrong. In any event, the person
writing the monitor does not have to be aware of how the compiler arranges for mutual exclusion.
It is sufficient to know that by turning all the critical regions into monitor procedures, no two
processes will ever execute their critical regions at the same time.
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Although monitors provide an easy way to achieve mutual exclusion, as we have seen above, that
is not enough. We also need a way for processes to block when they cannot proceed. In the
producer-consumer problem, it is easy enough to put all the tests for buffer-full and buffer-empty
in monitor procedures, but how should the producer block when it finds the buffer full?

The solution lies in the introduction of condition variables , along with two operations on them,
wai t and si gnal . When a monitor procedure discovers that it cannot continue (e.g., the producer
finds the buffer full), it does a wai t on some condition variable, say, full . This action causes the



calling process to block. It also allows another process that had been previously prohibited from
entering the monitor to enter now.

This other process, for example, the consumer, can wake up its sleeping partner-by doing a

si gnal on the condition variable that its partner is waiting on. To avoid having two active
processes in the monitor at the same time, we need a rule telling what happens after a si gnal
Hoare proposed letting the newly awakened process run, suspending the other one. Brinch
Hansen proposed finessing the problem by requiring that a process doing a si gnal must exit the
monitor immediately. In other words, a si gnal statement may appear only as the final statement
in a monitor procedure. We will use Brinch Hansen's proposal because it is conceptually simpler
and is also easier to implement. If a si gnal is done on a condition variable on which several
processes are waiting, only one of them, determined by the system scheduler, is revived.

There is also a third solution, not proposed by either Hoare or Brinch Hansen. This is to let the
signaler continue to run and allow the waiting process to start running only after the signaler has
exited the monitor.

Condition variables are not counters. They do not accumulate signals for later use the way
semaphores do. Thus if a condition variable is signaled with no one waiting on it, the signal is lost.
In other words, the wai t must come before the si gnal . This rule makes the implementation
much simpler. In practice it is not a problem because it is easy to keep track of the state of each
process with variables, if need be. A process that might otherwise do a si gnal can see that this
operation is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in Fig. 2-16 in Pidgin Pascal.
The advantage of using Pidgin Pascal here is that it is pure and simple and follows the
Hoare/Brinch Hansen model exactly.

Figure 2-16. An outline of the producer-consumer problem with
monitors. Only one monitor procedure at a time is active. The buffer
has N slots.

(This item is displayed on page 84 in the print version)

nmoni t or Producer Consurmer
condition full, enpty;
i nt eger count;

procedure insert(item integer);
begi n

if count = N then wait(full);

insert _item(item;

count := count + 1,

if count = 1 then signal (enpty)
end,

function renove: integer;
begi n
if count = 0 then wait(enpty);
renove = renove_item
count := count 1;
if count = N 1 then signal (full)
end,

count := 0;



end nonitor;

procedure producer;

begi n
while true do
begi n
item = produce_item
Producer Consuner.insert(item
end
end;

pr ocedure consuner;

begi n
while true do
begi n
item = Producer Consuner. r enpve,
consunme_item(item
end
end;

You may be thinking that the operations wai t and si gnal look similar to sl eep and wakeup , which
we saw earlier had fatal race conditions. They are very similar, but with one crucial difference:

sl eep and wakeup failed because while one process was trying to go to sleep, the other one was
trying to wake it up. With monitors, that cannot happen. The automatic mutual exclusion on
monitor procedures guarantees that if, say, the producer inside a monitor procedure discovers
that the buffer is full, it will be able to complete the wai t operation without having to worry about
the possibility that the scheduler may switch to the consumer just before the wai t completes. The
consumer will not even be let into the monitor at all until the wai t is finished and the producer is
marked as no longer runnable.
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Although Pidgin Pascal is an imaginary language, some real programming languages also support
monitors, although not always in the form designed by Hoare and Brinch Hansen. One such
language is Java. Java is an object-oriented language that supports user-level threads and also
allows methods (procedures) to be grouped together into classes. By adding the keyword
synchroni zed to a method declaration, Java guarantees that once any thread has started
executing that method, no other thread will be allowed to start executing any other synchroni zed
method in that class.
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Synchronized methods in Java differ from classical monitors in an essential way: Java does not
have condition variables. Instead, it offers two procedures, wait and notify that are the equivalent
of sleep and wakeup except that when they are used inside synchronized methods, they are not
subject to race conditions.

By making the mutual exclusion of critical regions automatic, monitors make parallel
programming much less error-prone than with semaphores. Still, they too have some drawbacks.
It is not for nothing that Fig. 2-16 is written in Pidgin Pascal rather than in C, as are the other
examples in this book. As we said earlier, monitors are a programming language concept. The



compiler must recognize them and arrange for the mutual exclusion somehow. C, Pascal, and
most other languages do not have monitors, so it is unreasonable to expect their compilers to
enforce any mutual exclusion rules. In fact, how could the compiler even know which procedures
were in monitors and which were not?

These same languages do not have semaphores either, but adding semaphores is easy: all you
need to do is add two short assembly code routines to the library to issue the up and down system
calls. The compilers do not even have to know that they exist. Of course, the operating systems
have to know about the semaphores, but at least if you have a semaphore-based operating
system, you can still write the user programs for it in C or C++ (or even FORTRAN if you are
masochistic enough). With monitors, you need a language that has them built in.

Another problem with monitors, and also with semaphores, is that they were designed for solving
the mutual exclusion problem on one or more CPUs that all have access to a common memory.
By putting the semaphores in the shared memory and protecting them with TSL instructions, we
can avoid races. When we go to a distributed system consisting of multiple CPUs, each with its
own private memory, connected by a local area network, these primitives become inapplicable.
The conclusion is that semaphores are too low level and monitors are not usable except in a few
programming languages. Also, none of the primitives provide for information exchange between
machines. Something else is needed.

2.2.8. Message Passing

That something else is message passing . This method of interprocess communication uses two
primitives, send and recei ve , which, like semaphores and unlike monitors, are system calls
rather than language constructs. As such, they can easily be put into library procedures, such as
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send(destinati on, &mressage);

and

recei ve(source, &nessage);

The former call sends a message to a given destination and the latter one receives a message
from a given source (or from ANY , if the receiver does not care). If no message is available, the
receiver could block until one arrives. Alternatively, it could return immediately with an error
code.

Design Issues for Message Passing Systems

Message passing systems have many challenging problems and design issues that do not arise
with semaphores or monitors, especially if the communicating processes are on different
machines connected by a network. For example, messages can be lost by the network. To guard
against lost messages, the sender and receiver can agree that as soon as a message has been
received, the receiver will send back a special acknowledgement message. If the sender has
not received the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message itself is received correctly, but the acknowledgement
is lost. The sender will retransmit the message, so the receiver will get it twice. It is essential that



the receiver can distinguish a new message from the retransmission of an old one. Usually, this
problem is solved by putting consecutive sequence numbers in each original message. If the
receiver gets a message bearing the same sequence number as the previous message, it knows
that the message is a duplicate that can be ignored.

Message systems also have to deal with the question of how processes are named, so that the
process specified in a send or recei ve call is unambiguous. Authentication is also an issue in
message systems: how can the client tell that he is communicating with the real file server, and
not with an imposter?

At the other end of the spectrum, there are also design issues that are important when the
sender and receiver are on the same machine. One of these is performance. Copying messages
from one process to another is always slower than doing a semaphore operation or entering a
monitor. Much work has gone into making message passing efficient. Cheriton (1984 ), for
example, has suggested limiting message size to what will fit in the machine's registers, and then
doing message passing using the registers.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with message passing and no
shared memory. A solution is given in Fig. 2-17 . We assume that all messages are the same size
and that messages sent but not yet received are buffered automatically by the operating system.
In this solution, a total of N messages is used, analogous to the N slots in a shared memory
buffer. The consumer starts out by sending N empty messages to the producer. Whenever the
producer has an item to give to the consumer, it takes an empty message and sends back a full
one. In this way, the total number of messages in the system remains constant in time, so they
can be stored in a given amount of memory known in advance.
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Figure 2-17. The producer-consumer problem with N messages.

#define N 100 /* nunber of slots in the buffer

voi d producer (void)

{
int item
nmessage m /* nmessage buffer */
while (TRUE) {
item = produce_iten(); /* generate sonething to put in
recei ve(consuner, &nj; /* wait for an enpty to arrive *
bui |l d_nmessage(&m item; /* construct a nessage to send *,
send(consuner, &m; /* send itemto consuner */
}
}
voi d consuner (voi d)
{
int item i;
nmessage m
for (i =0; i <N, i++) send(producer, &m; /* send N enpties */

while (TRUE) {
recei ve(producer, &n); /* get message containing item™*



item= extract _item &m; /* extract item from nessage */
send( producer, &m; /* send back enpty reply */
consune_iten(item; /* do sonelthing with the item*,

If the producer works faster than the consumer, all the messages will end up full, waiting for the
consumer; the producer will be blocked, waiting for an empty to come back. If the consumer
works faster, then the reverse happens: all the messages will be empties waiting for the producer
to fill them up; the consumer will be blocked, waiting for a full message.

Many variants are possible with message passing. For starters, let us look at how messages are
addressed. One way is to assign each process a unique address and have messages be addressed
to processes. A different way is to invent a new data structure, called a mailbox . A mailbox is a
place to buffer a certain number of messages, typically specified when the mailbox is created.
When mailboxes are used, the address parameters in the send and r ecei ve calls are mailboxes,
not processes. When a process tries to send to a mailbox that is full, it is suspended until a
message is removed from that mailbox, making room for a new one.
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For the producer-consumer problem, both the producer and consumer would create mailboxes
large enough to hold N messages. The producer would send messages containing data to the
consumer's mailbox, and the consumer would send empty messages to the producer's mailbox.
When mailboxes are used, the buffering mechanism is clear: the destination mailbox holds
messages that have been sent to the destination process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When this approach is
followed, if the send is done before the recei ve , the sending process is blocked until the recei ve
happens, at which time the message can be copied directly from the sender to the receiver, with
no intermediate buffering. Similarly, if the recei ve is done first, the receiver is blocked until a
send happens. This strategy is often known as a rendezvous . It is easier to implement than a
buffered message scheme but is less flexible since the sender and receiver are forced to run in
lockstep.

The processes that make up the MINIX 3 operating system itself use the rendezvous method with
fixed size messages for communication among themselves. User processes also use this method
to communicate with operating system components, although a programmer does not see this,
since library routines mediate systems calls. Interprocess communication between user processes
in MINIX 3 (and UNIX) is via pipes, which are effectively mailboxes. The only real difference
between a message system with mailboxes and the pipe mechanism is that pipes do not preserve
message boundaries. In other words, if one process writes 10 messages of 100 bytes to a pipe
and another process reads 1000 bytes from that pipe, the reader will get all 10 messages at once.
With a true message system, each r ead should return only one message. Of course, if the
processes agree always to read and write fixed-size messages from the pipe, or to end each
message with a special character (e.g., linefeed), no problems arise.

Message passing is commonly used in parallel programming systems. One well-known message-
passing system, for example, is MPI1 (Message-Passing Interface ). It is widely used for
scientific computing. For more information about it, see for example Gropp et al. (1994) and Snir
et al. (1996).
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[Page 88 (continued)]

2.3. Classical IPC Problems

The operating systems literature is full of interprocess communication problems that have been
widely discussed using a variety of synchronization methods. In the following sections we will
examine two of the better-known problems.
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2.3.1. The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he called the dining philosophers
problem . Since that time, everyone inventing yet another synchronization primitive has felt
obligated to demonstrate how wonderful the new primitive is by showing how elegantly it solves
the dining philosophers problem. The problem can be stated quite simply as follows. Five
philosophers are seated around a circular table. Each philosopher has a plate of spaghetti. The
spaghetti is so slippery that a philosopher needs two forks to eat it. Between each pair of plates is
one fork. The layout of the table is illustrated in Fig. 2-18 .

Figure 2-18. Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking. (This is something of
an abstraction, even for philosophers, but the other activities are irrelevant here.) When a
philosopher gets hungry, she tries to acquire her left and right fork, one at a time, in either order.
If successful in acquiring two forks, she eats for a while, then puts down the forks and continues
to think. The key question is: can you write a program for each philosopher that does what it is
supposed to do and never gets stuck? (It has been pointed out that the two-fork requirement is
somewhat artificial; perhaps we should switch from Italian to Chinese food, substituting rice for
spaghetti and chopsticks for forks.)



Figure 2-19 shows the obvious solution. The procedure take fork waits until the specified fork is
available and then seizes it. Unfortunately, the obvious solution is wrong. Suppose that all five
philosophers take their left forks simultaneously. None will be able to take their right forks, and
there will be a deadlock.

Figure 2-19. A nonsolution to the dining philosophers problem.

(This item is displayed on page 90 in the print version)

#define N5 [ * nunber of philosophers */
voi d phil osopher(int i) [* i: philosopher nunber, fromO to 4 */
{
while (TRUE) {
t hi nk(); /* philosopher is thinking */
take_fork(i); /* take left fork */
take fork((i+1l) % N); /* take right fork; %is nodul o operator */
eat (); /* yumyum spaghetti */
put _fork(i); /* put left fork back on the table */
put _fork((i+1l) % N); /* put right fork back on the table */

We could modify the program so that after taking the left fork, the program checks to see if the
right fork is available. If it is not, the philosopher puts down the left one, waits for some time, and
then repeats the whole process. This proposal too, fails, although for a different reason. With a
little bit of bad luck, all the philosophers could start the algorithm simultaneously, picking up their
left forks, seeing that their right forks were not available, putting down their left forks, waiting,
picking up their left forks again simultaneously, and so on, forever. A situation like this, in which
all the programs continue to run indefinitely but fail to make any progress is called starvation .
(It is called starvation even when the problem does not occur in an Italian or a Chinese
restaurant.)
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Now you might think, "If the philosophers would just wait a random time instead of the same time
after failing to acquire the right-hand fork, the chance that everything would continue in lockstep
for even an hour is very small." This observation is true, and in nearly all applications trying again
later is not a problem. For example, in a local area network using Ethernet, a computer sends a
packet only when it detects no other computer is sending one. However, because of transmission
delays, two computers separated by a length of cable may send packets that overlapa collision.
When a collision of packets is detected each computer waits a random time and tries again; in
practice this solution works fine. However, in some applications one would prefer a solution that
always works and cannot fail due to an unlikely series of random numbers. Think about safety
control in a nuclear power plant.

One improvement to Fig. 2-19 that has no deadlock and no starvation is to protect the five
statements following the call to think by a binary semaphore. Before starting to acquire forks, a
philosopher would do a down on mutex . After replacing the forks, she would do an up on mutex .
From a theoretical viewpoint, this solution is adequate. From a practical one, it has a performance
bug: only one philosopher can be eating at any instant. With five forks available, we should be
able to allow two philosophers to eat at the same time.
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The solution presented in Fig. 2-20 is deadlock-free and allows the maximum parallelism for an
arbitrary number of philosophers. It uses an array, state , to keep track of whether a philosopher
is eating, thinking, or hungry (trying to acquire forks). A philosopher may move into eating state
only if neither neighbor is eating. Philosopher i 's neighbors are defined by the macros LEFT and
RIGHT . In other words, ifi is 2, LEFT is 1 and RIGHT is 3.

Figure 2-20. A solution to the dining philosophers problem.

(This item is displayed on page 91 in the print version)

#define N 5 /* nunber of phil osophers */
#define LEFT (i +N-1) 9N /* nunber of i's |left neighbor */
#define RI GHT (1 +1) 9N /* nunber of i's right neighbor */
#defi ne THI NKI NG 0 /* phil osopher is thinking */
#defi ne HUNGRY 1 /* phil osopher is trying to get forks */
#defi ne EATI NG 2 /* phil osopher is eating */
typedef int senmaphore; /* semaphores are a special kind of int */
int state[N; /* array to keep track of everyone's state */
semaphore nutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per phil osopher */
voi d phil osopher(int i) [* i: philosopher number, fromO to N1 */
{
whil e (TRUE){ /* repeat forever */
thi nk(); /* phil osopher is thinking */
take_forks(i); /* acquire two forks or block */
eat(); /* yumyum spaghetti */
put _forks(i); /* put both forks back on table */
}
}
void take_forks(int i) [* i: phil osopher number, fromO to N1 */
{
down( &mut ex) ; /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up( &mut ex) ; /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}
void put_forks(i) /* i: philosopher nunmber, fromO to N1 */
{
down( &mut ex) ; /* enter critical region */
state[i] = THI NKI NG /* phil osopher has finished eating */
t est (LEFT); /* see if left neighbor can now eat */
test (Rl GHT) ; /* see if right neighbor can now eat */
up( &mut ex) ; /* exit critical region */
}
void test(i) [* i: philosopher nunber, fromO to N1* /
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[ RIGHT] != EATING {

state[i] = EATING
up(&sfi]);



The program uses an array of semaphores, one per philosopher, so hungry philosophers can block
if the needed forks are busy. Note that each process runs the procedure philosopher as its main
code, but the other procedures, take forks , put_forks , and test are ordinary procedures and not
separate processes.

2.3.2. The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are competing for exclusive
access to a limited number of resources, such as 1/0 devices. Another famous problem is the
readers and writers problem which models access to a database (Courtois et al., 1971 ). Imagine,
for example, an airline reservation system, with many competing processes wishing to read and
write it. It is acceptable to have multiple processes reading the database at the same time, but if
one process is updating (writing) the database, no other process may have access to the
database, not even a reader. The question is how do you program the readers and the writers?
One solution is shown in Fig. 2-21 .

Figure 2-21. A solution to the readers and writers problem.

(This item is displayed on page 93 in the print version)

typedef int senmaphore; /* use your imagination */

semaphore nmutex = 1; /* controls access to 'rc' */

semaphore db = 1; /* controls access to the database */

int rc = 0; /* # of processes reading or wanting to */

voi d reader (void)

{
whil e (TRUE) { /* repeat forever */
down( &mut ex) ; /* get exclusive access to 'rc' */
rc =rc + 1; /* one reader nore now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up( &mut ex) ; /* rel ease exclusive access to 'rc' */
read_dat a_base(); /* access the data */
down( &mut ex) ; /* get exclusive access to 'rc' */
rc =rc 1; /* one reader fewer now */
if (rc == 0) up(&db); [* if this is the last reader ... */
up( &mut ex) ; /* rel ease exclusive access to 'rc' */
use_data_read(); /* noncritical region */
}
}
void witer(void)
{
whi | e (TRUE) { /* repeat forever */
t hi nk_up_data(); /* noncritical region */
down( &db) ; /* get exclusive access */
wite data base(); /* update the data */
up( &db) ; /* rel ease exclusive access */



In this solution, the first reader to get access to the data base does a down on the semaphore db .
Subsequent readers merely have to increment a counter, rc . As readers leave, they decrement
the counter and the last one out does an up on the semaphore, allowing a blocked writer, if there
is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth commenting on.
Suppose that while a reader is using the data base, another reader comes along. Since having
two readers at the same time is not a problem, the second reader is admitted. A third and
subsequent readers can also be admitted if they come along.

Now suppose that a writer comes along. The writer cannot be admitted to the data base, since
writers must have exclusive access, so the writer is suspended. Later, additional readers show up.
As long as at least one reader is still active, subsequent readers are admitted. As a consequence
of this strategy, as long as there is a steady supply of readers, they will all get in as soon as they
arrive. The writer will be kept suspended until no reader is present. If a new reader arrives, say,
every 2 seconds, and each reader takes 5 seconds to do its work, the writer will never get in.

To prevent this situation, the program could be written slightly differently: When a reader arrives
and a writer is waiting, the reader is suspended behind the writer instead of being admitted
immediately. In this way, a writer has to wait for readers that were active when it arrived to finish
but does not have to wait for readers that came along after it. The disadvantage of this solution is
that it achieves less concurrency and thus lower performance. Courtois et al. present a solution
that gives priority to writers. For details, we refer you to the paper.
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[Page 93 (continued)]

2.4. Scheduling

In the examples of the previous sections, we have often had situations in which two or more
processes (e.g., producer and consumer) were logically runnable. When a computer is
multiprogrammed, it frequently has multiple processes competing for the CPU at the same time.
When more than one process is in the ready state and there is only one CPU available, the
operating system must decide which process to run first. The part of the operating system that
makes the choice is called the scheduler; the algorithm it uses is called the scheduling
algorithm.
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Many scheduling issues apply both to processes and threads. Initially, we will focus on process
scheduling, but later we will take a brief look at some issues specific to thread scheduling.

2.4.1. Introduction to Scheduling

Back in the old days of batch systems with input in the form of card images on a magnetic tape,
the scheduling algorithm was simple: just run the next job on the tape. With timesharing
systems, the scheduling algorithm became more complex, because there were generally multiple
users waiting for service. There may be one or more batch streams as well (e.g., at an insurance
company, for processing claims). On a personal computer you might think there would be only
one active process. After all, a user entering a document on a word processor is unlikely to be
simultaneously compiling a program in the background. However, there are often background
jobs, such as electronic mail daemons sending or receiving e-mail. You might also think that
computers have gotten so much faster over the years that the CPU is rarely a scarce resource
any more. However, new applications tend to demand more resources. Processing digital
photographs or watching real time video are examples.

Process Behavior

Nearly all processes alternate bursts of computing with (disk) 1/0 requests, as shown in Fig. 2-22.
Typically the CPU runs for a while without stopping, then a system call is made to read from a file
or write to a file. When the system call completes, the CPU computes again until it needs more
data or has to write more data, and so on. Note that some 1/0 activities count as computing. For
example, when the CPU copies bits to a video RAM to update the screen, it is computing, not
doing 1/0, because the CPU is in use. I/0 in this sense is when a process enters the blocked state
waiting for an external device to complete its work.

Figure 2-22. Bursts of CPU usage alternate with periods of waiting for
1/0. (a) A CPU-bound process. (b) An 1/0-bound process.

(This item is displayed on page 95 in the print version)
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The important thing to notice about Fig. 2-22 is that some processes, such as the one in Fig. 2-
22(a), spend most of their time computing, while others, such as the one in Fig. 2-22(b), spend
most of their time waiting for 1/0. The former are called compute-bound; the latter are called
1/0-bound. Compute-bound processes typically have long CPU bursts and thus infrequent 1/0
waits, whereas 1/0-bound processes have short CPU bursts and thus frequent 1/0 waits. Note
that the key factor is the length of the CPU burst, not the length of the 170 burst. 1/0-bound
processes are 1/0 bound because they do not compute much between 1/0 requests, not because
they have especially long 1/0 requests. It takes the same time to read a disk block no matter how
much or how little time it takes to process the data after they arrive.
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It is worth noting that as CPUs get faster, processes tend to get more 1/0-bound. This effect
occurs because CPUs are improving much faster than disks. As a consequence, the scheduling of
1/0-bound processes is likely to become a more important subject in the future. The basic idea
here is that if an 1/0-bound process wants to run, it should get a chance quickly so it can issue its
disk request and keep the disk busy.

When to Schedule

There are a variety of situations in which scheduling may occur. First, scheduling is absolutely
required on two occasions:

1. When a process exits.
2. When a process blocks on 1/0, or a semaphore.

In each of these cases the process that had most recently been running becomes unready, so
another must be chosen to run next.

There are three other occasions when scheduling is usually done, although logically it is not
absolutely necessary at these times:

1. When a new process is created.



2. When an I/0 interrupt occurs.
3. When a clock interrupt occurs.

In the case of a new process, it makes sense to reevaluate priorities at this time. In some cases
the parent may be able to request a different priority for its child.
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In the case of an 1/0 interrupt, this usually means that an 1/0 device has now completed its work.
So some process that was blocked waiting for 1/0 may now be ready to run.

In the case of a clock interrupt, this is an opportunity to decide whether the currently running
process has run too long. Scheduling algorithms can be divided into two categories with respect to
how they deal with clock interrupts. A non-preemptive scheduling algorithm picks a process to
run and then just lets it run until it blocks (either on 1/0 or waiting for another process) or until it
voluntarily releases the CPU. In contrast, a preemptive scheduling algorithm picks a process and
lets it run for a maximum of some fixed time. If it is still running at the end of the time interval, it
is suspended and the scheduler picks another process to run (if one is available). Doing
preemptive scheduling requires having a clock interrupt occur at the end of the time interval to
give control of the CPU back to the scheduler. If no clock is available, nonpreemptive scheduling is
the only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are needed. This
situation arises because different application areas (and different kinds of operating systems)
have different goals. In other words, what the scheduler should optimize for is not the same in all
systems. Three environments worth distinguishing are

1. Batch.
2. Interactive.
3. Real time.

In batch systems, there are no users impatiently waiting at their terminals for a quick response.
Consequently, nonpreemptive algorithms, or preemptive algorithms with long time periods for
each process are often acceptable. This approach reduces process switches and thus improves
performance.

In an environment with interactive users, preemption is essential to keep one process from
hogging the CPU and denying service to the others. Even if no process intentionally ran forever,
due to a program bug, one process might shut out all the others indefinitely. Preemption is
needed to prevent this behavior.

In systems with real-time constraints, preemption is, oddly enough, sometimes not needed
because the processes know that they may not run for long periods of time and usually do their
work and block quickly. The difference with interactive systems is that real-time systems run only
programs that are intended to further the application at hand. Interactive systems are general
purpose and may run arbitrary programs that are not cooperative or even malicious.
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Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of what a good
algorithm should do. Some goals depend on the environment (batch, interactive, or real time),
but there are also some that are desirable in all cases. Some goals are listed in Fig. 2-23. We will
discuss these in turn below.

Figure 2-23. Some goals of the scheduling algorithm
under different circumstances.

All systems

Fairness giving each process a fair share of the CPU
Policy enforcement seeing that stated policy is carried out
Balance keeping all parts of the system busy

Batch systems

Throughput maximize jobs per hour
Turnaround time minimize time between submission and termination
CPU utilization keep the CPU busy all the time

Interactive systems

Response time respond to requests quickly
Proportionality meet users' expectations

Realtime systems

Meeting deadlines avoid losing data
Predictability avoid quality degradation in multimedia systems

Under all circumstances, fairness is important. Comparable processes should get comparable
service. Giving one process much more CPU time than an equivalent one is not fair. Of course,
different categories of processes may be treated differently. Think of safety control and doing the
payroll at a nuclear reactor's computer center.

Somewhat related to fairness is enforcing the system's policies. If the local policy is that safety
control processes get to run whenever they want to, even if it means the payroll is 30 sec late,
the scheduler has to make sure this policy is enforced.

Another general goal is keeping all parts of the system busy when possible. If the CPU and all the
1/0 devices can be kept running all the time, more work gets done per second than if some of the
components are idle. In a batch system, for example, the scheduler has control of which jobs are
brought into memory to run. Having some CPU-bound processes and some 1/0-bound processes
in memory together is a better idea than first loading and running all the CPU-bound jobs and
then, when they are finished, loading and running all the 1/0-bound jobs. If the latter strategy is
used, when the CPU-bound processes are running, they will fight for the CPU and the disk will be
idle. Later, when the 1/0-bound jobs come in, they will fight for the disk and the CPU will be idle.



Better to keep the whole system running at once by a careful mix of processes.
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The managers of corporate computer centers that run many batch jobs (e.g., processing
insurance claims) typically look at three metrics to see how well their systems are performing:
throughput, turnaround time, and CPU utilization. Throughput is the number of jobs per
second that the system completes. All things considered, finishing 50 jobs per second is better
than finishing 40 jobs per second. Turnaround time is the average time from the moment that a
batch job is submitted until the moment it is completed. It measures how long the average user
has to wait for the output. Here the rule is: Small is Beautiful.

A scheduling algorithm that maximizes throughput may not necessarily minimize turnaround
time. For example, given a mix of short jobs and long jobs, a scheduler that always ran short jobs
and never ran long jobs might achieve an excellent throughput (many short jobs per second) but
at the expense of a terrible turnaround time for the long jobs. If short jobs kept arriving at a
steady rate, the long jobs might never run, making the mean turnaround time infinite while
achieving a high throughput.

CPU utilization is also an issue with batch systems because on the big mainframes where batch
systems run, the CPU is still a major expense. Thus computer center managers feel guilty when it
is not running all the time. Actually though, this is not such a good metric. What really matters is
how many jobs per second come out of the system (throughput) and how long it takes to get a
job back (turnaround time). Using CPU utilization as a metric is like rating cars based on how
many times per second the engine turns over.

For interactive systems, especially timesharing systems and servers, different goals apply. The
most important one is to minimize response time, that is the time between issuing a command
and getting the result. On a personal computer where a background process is running (for
example, reading and storing email from the network), a user request to start a program or open
a file should take precedence over the background work. Having all interactive requests go first
will be perceived as good service.

A somewhat related issue is what might be called proportionality. Users have an inherent (but
often incorrect) idea of how long things should take. When a request that is perceived as complex
takes a long time, users accept that, but when a request that is perceived as simple takes a long
time, users get irritated. For example, if clicking on a icon that calls up an Internet provider using
an analog modem takes 45 seconds to establish a connection, the user will probably accept that
as a fact of life. On the other hand, if clicking on an icon that breaks the connection takes 45
seconds, the user will probably be swearing a blue streak by the 30-sec mark and frothing at the
mouth by 45 sec. This behavior is due to the common user perception that placing a phone call
and getting a connection is supposed to take a lot longer than just hanging up. In some cases
(such as this one), the scheduler cannot do anything about the response time, but in other cases
it can, especially when the delay is due to a poor choice of process order.
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Real-time systems have different properties than interactive systems, and thus different
scheduling goals. They are characterized by having deadlines that must or at least should be met.
For example, if a computer is controlling a device that produces data at a regular rate, failure to
run the data-collection process on time may result in lost data. Thus the foremost need in a real-
time system is meeting all (or most) deadlines.

In some real-time systems, especially those involving multimedia, predictability is important.
Missing an occasional deadline is not fatal, but if the audio process-runs too erratically, the sound



quality will deteriorate rapidly. Video is also an issue, but the ear is much more sensitive to jitter
than the eye. To avoid this problem, process scheduling must be highly predictable and regular.

2.4.2. Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling algorithms. In this
section we will look at algorithms used in batch systems. In the following ones we will examine
interactive and real-time systems. It is worth pointing out that some algorithms are used in both
batch and interactive systems. We will study these later. Here we will focus on algorithms that are
only suitable in batch systems.

First-Come First-Served

Probably the simplest of all scheduling algorithms is nonpreemptive first-come first-served.
With this algorithm, processes are assigned the CPU in the order they request it. Basically, there
is a single queue of ready processes. When the first job enters the system from the outside in the
morning, it is started immediately and allowed to run as long as it wants to. As other jobs come
in, they are put onto the end of the queue. When the running process blocks, the first process on
the queue is run next. When a blocked process becomes ready, like a newly arrived job, it is put
on the end of the queue.

The great strength of this algorithm is that it is easy to understand and equally easy to program.
It is also fair in the same sense that allocating scarce sports or concert tickets to people who are
willing to stand on line starting at 2A .M . is fair. With this algorithm, a single linked list keeps
track of all ready processes. Picking a process to run just requires removing one from the front of
the queue. Adding a new job or unblocked process just requires attaching it to the end of the
queue. What could be simpler?

Unfortunately, first-come first-served also has a powerful disadvantage. Suppose that there is one
compute-bound process that runs for 1 sec at a time and many 1I/0-bound processes that use
little CPU time but each have to perform 1000 disk reads in order to complete. The compute-
bound process runs for 1 sec, then it reads a disk block. All the 1/0 processes now run and start
disk reads. When the compute-bound process gets its disk block, it runs for another 1 sec,
followed by all the 1/0-bound processes in quick succession.
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The net result is that each 1/0-bound process gets to read 1 block per second and will take 1000
sec to finish. With a scheduling algorithm that preempted the compute-bound process every 10
msec, the 1/0-bound processes would finish in 10 sec instead of 1000 sec, and without slowing
down the compute-bound process very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the run times are known
in advance. In an insurance company, for example, people can predict quite accurately how long
it will take to run a batch of 1000 claims, since similar work is done every day. When several
equally important jobs are sitting in the input queue waiting to be started, the scheduler picks the
shortest job first. Look at Fig. 2-24. Here we find four jobs A, B, C, and D with run times of 8,
4, 4, and 4 minutes, respectively. By running them in that order, the turnaround time for A is 8
minutes, for B is 12 minutes, for C is 16 minutes, and for D is 20 minutes for an average of 14



minutes.

Figure 2-24. An example of shortest job first scheduling. (a) Running
four jobs in the original order. (b) Running them in shortest job first
order.

(a) ()

Now let us consider running these four jobs using shortest job first, as shown in Fig. 2-24(b). The
turnaround times are now 4, 8, 12, and 20 minutes for an average of 11 minutes. Shortest job
first is provably optimal. Consider the case of four jobs, with run times of a, b, ¢, and d,
respectively. The first job finishes at time a, the second finishes at time a + b, and so on. The
mean turnaround timeis (4 a+3 b+ 2 c + d) / 4. Itis clear that a contributes more to the
average than the other times, so it should be the shortest job, with b next, then c, and finally d as
the longest as it affects only its own turnaround time. The same argument applies equally well to
any number of jobs.

It is worth pointing out that shortest job first is only optimal when all the jobs are available
simultaneously. As a counterexample, consider five jobs, A through E, with run times of 2, 4, 1, 1,
and 1, respectively. Their arrival times are 0, O, 3, 3, and 3. Initially, only A or B can be chosen,
since the other three jobs have not arrived yet. Using shortest job first we will run the jobs in the
order A, B, C, D, E, for an average wait of 4.6. However, running them in the order B, C, D, E, A
has an average wait of 4.4.
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Shortest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time next. With this algorithm,
the scheduler always chooses the process whose remaining run time is the shortest. Again here,
the run time has to be known in advance. When a new job arrives, its total time is compared to
the current process' remaining time. If the new job needs less time to finish than the current
process, the current process is suspended and the new job started. This scheme allows new short
jobs to get good service.

Three-Level Scheduling

From a certain perspective, batch systems allow scheduling at three different levels, as illustrated
in Fig. 2-25. As jobs arrive at the system, they are initially placed in an input queue stored on the
disk. The admission scheduler decides which jobs to admit to the system. The others are kept
in the input queue until they are selected. A typical algorithm for admission control might be to
look for a mix of compute-bound jobs and 1/0-bound jobs. Alternatively, short jobs could be
admitted quickly whereas longer jobs would have to wait. The admission scheduler is free to hold
some jobs in the input queue and admit jobs that arrive later if it so chooses.



Figure 2-25. Three-level scheduling.

[View full size image]

Once a job has been admitted to the system, a process can be created for it and it can contend
for the CPU. However, it might well happen that the number of processes is so large that there is
not enough room for all of them in memory. In that case, some of the processes have to be
swapped out to disk. The second level of scheduling is deciding which processes should be kept in
memory and which ones should be kept on disk. We will call this scheduler the memory
scheduler, since it determines which processes are kept in memory and which on the disk.
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This decision has to be reviewed frequently to allow the processes on disk to get some service.
However, since bringing a process in from disk is expensive, the review probably should not
happen more often than once per second, maybe less often. If the contents of main memory are
shuffled too often, a large amount of disk bandwidth will be wasted, slowing down file 1/0.

To optimize system performance as a whole, the memory scheduler might well want to carefully
decide how many processes it wants in memory, called the degree of multiprogramming, and
what kind of processes. If it has information about which processes are compute bound and which
are 1/0 bound, it can try to keep a mix of these process types in memory. As a very crude
approximation, if a certain class of process computes about 20% of the time, keeping five of them
around is roughly the right number to keep the CPU busy.

To make its decisions, the memory scheduler periodically reviews each process-on disk to decide
whether or not to bring it into memory. Among the criteria that it can use to make its decision are
the following ones:

1. How long has it been since the process was swapped in or out?
2. How much CPU time has the process had recently?

3. How big is the process? (Small ones do not get in the way.)



4. How important is the process?

The third level of scheduling is actually picking one of the ready processes in main memory to run
next. Often this is called the CPU scheduler and is the one people usually mean when they talk
about the "scheduler." Any suitable algorithm can be used here, either preemptive or
nonpreemptive. These include the ones described above as well as a number of algorithms to be
described in the next section.

2.4.3. Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive systems. All of these can also
be used as the CPU scheduler in batch systems as well. While three-level scheduling is not
possible here, two-level scheduling (memory scheduler and CPU scheduler) is possible and
common. Below we will focus on the CPU scheduler and some common scheduling algorithms.
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Round-Robin Scheduling

Now let us look at some specific scheduling algorithms. One of the oldest, simplest, fairest, and
most widely used algorithms is round robin. Each process is assigned a time interval, called its
quantum, which it is allowed to run. If the process is still running at the end of the quantum, the
CPU is preempted and given to another process. If the process has blocked or finished before the
quantum has elapsed, the CPU switching is done when the process blocks, of course. Round robin
is easy to implement. All the scheduler needs to do is maintain a list of runnable processes, as
shown in Fig. 2-26(a). When the process uses up its quantum, it is put on the end of the list, as

shown in Fig. 2-26(b).

Figure 2-26. Round-robin scheduling. (a) The list of runnable
processes. (b) The list of runnable processes after B uses up its
qguantum.

[View full size image]
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The only interesting issue with round robin is the length of the quantum. Switching from one
process to another requires a certain amount of time for doing the administrationsaving and
loading registers and memory maps, updating various tables and lists, flushing and reloading the
memory cache, etc. Suppose that this process switch or context switch, as it is sometimes
called, takes 1 msec, including switching memory maps, flushing and reloading the cache, etc.
Also suppose that the quantum is set at 4 msec. With these parameters, after doing 4 msec of
useful work, the CPU will have to spend 1 msec on process switching. Twenty percent of the CPU
time will be wasted on administrative overhead. Clearly, this is too much.



To improve the CPU efficiency, we could set the quantum to, say, 100 msec. Now the wasted time
is only 1 percent. But consider what happens on a timesharing system if ten interactive users hit
the carriage return key at roughly the same time. Ten processes will be put on the list of runnable
processes. If the CPU is idle, the first one will start immediately, the second one may not start
until 100 msec later, and so on. The unlucky last one may have to wait 1 sec before getting a
chance, assuming all the others use their full quanta. Most users will perceive a 1-sec response to
a short command as sluggish.

Another factor is that if the quantum is set longer than the mean CPU burst, preemption will
rarely happen. Instead, most processes will perform a blocking operation before the quantum
runs out, causing a process switch. Eliminating preemption improves performance because
process switches then only happen when they are logically necessary, that is, when a process
blocks and cannot continue because it is logically waiting for something.
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The conclusion can be formulated as follows: setting the quantum too short causes too many
process switches and lowers the CPU efficiency, but setting it too long may cause poor response
to short interactive requests. A quantum of around 2050 msec is often a reasonable compromise.

Priority Scheduling

Round-robin scheduling makes the implicit assumption that all processes are equally important.
Frequently, the people who own and operate multiuser computers have different ideas on that
subject. At a university, the pecking order may be deans first, then professors, secretaries,
janitors, and finally students. The need to take external factors into account leads to priority
scheduling. The basic idea is straightforward: Each process is assigned a priority, and the
runnable process with the highest priority is allowed to run.

Even on a PC with a single owner, there may be multiple processes, some more important than
others. For example, a daemon process sending electronic mail in the background should be
assigned a lower priority than a process displaying a video film on the screen in real time.

To prevent high-priority processes from running indefinitely, the scheduler may decrease the
priority of the currently running process at each clock tick (i.e., at each clock interrupt). If this
action causes its priority to drop below that of the next highest process, a process switch occurs.
Alternatively, each process may be assigned a maximum time quantum that it is allowed to run.
When this quantum is used up, the next highest priority process is given a chance to run.

Priorities can be assigned to processes statically or dynamically. On a military-computer,
processes started by generals might begin at priority 100, processes started by colonels at 90,
majors at 80, captains at 70, lieutenants at 60, and so on. Alternatively, at a commercial
computer center, high-priority jobs might cost 100 dollars an hour, medium priority 75 dollars an
hour, and low priority 50 dollars an hour. The UNIX system has a command, nice, which allows a
user to voluntarily reduce the priority of his process, in order to be nice to the other users.
Nobody ever uses it.

Priorities can also be assigned dynamically by the system to achieve certain system goals. For
example, some processes are highly 1/0 bound and spend most of their time waiting for 1/0 to
complete. Whenever such a process wants the CPU, it should be given the CPU immediately, to let
it start its next 1/0 request, which can then proceed in parallel with another process actually
computing. Making the 1/0-bound process wait a long time for the CPU will just mean having it
around occupying memory for an unnecessarily long time. A simple algorithm for giving good
service to 1I/0-bound processes is to set the priority to 1 / f, where fis the fraction of the last



quantum that a process used. A process that used only 1 msec of its 50 msec quantum would get
priority 50, while a process that ran 25 msec before blocking would get priority 2, and a process
that used the whole quantum would get priority 1.
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It is often convenient to group processes into priority classes and use priority scheduling among
the classes but round-robin scheduling within each class. Figure 2-27 shows a system with four
priority classes. The scheduling algorithm is as follows: as long as there are runnable processes in
priority class 4, just run each one for one quantum, round-robin fashion, and never bother with
lower priority classes. If priority class 4 is empty, then run the class 3 processes round robin. If
classes 4 and 3 are both empty, then run class 2 round robin, and so on. If priorities are not
adjusted occasionally, lower priority classes may all starve to death.

Figure 2-27. A scheduling algorithm with four priority classes.
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MINIX 3 uses a similar system to Fig. 2-27, although there are sixteen priority classes in the
default configuration. In MINIX 3, components of the operating system run as processes. MINIX 3
puts tasks (1/0 drivers) and servers (memory manager, file system, and network) in the highest
priority classes. The initial priority of each task or service is defined at compile time; 1/0 from a
slow device may be given lower priority than 1/0 from a fast device or even a server. User
processes generally have lower priority than system components, but all priorities can change
during execution.

Multiple Queues

One of the earliest priority schedulers was in CTSS (Corbat6 et al., 1962). CTSS had the problem
that process switching was very slow because the 7094 could hold only one process in memory.
Each switch meant swapping the current process to disk and reading in a new one from disk. The
CTSS designers quickly realized that it was more efficient to give CPU-bound processes a large
quantum once in a while, rather than giving them small quanta frequently (to reduce swapping).
On the other hand, giving all processes a large quantum would mean poor response time, as we
have already observed. Their solution was to set up priority classes. Processes in the highest class
were run for one quantum. Processes in the next highest class were run for two quanta.
Processes in the next class were run for four quanta, and so on. Whenever a process used up all
the quanta allocated to it, it was moved down one class.
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As an example, consider a process that needed to compute continuously for 100 quanta. It would
initially be given one quantum, then swapped out. Next time it would get two quanta before being
swapped out. On succeeding runs it would get 4, 8, 16, 32, and 64 quanta, although it would
have used only 37 of the final 64 quanta to complete its work. Only 7 swaps would be needed
(including the initial load) instead of 100 with a pure round-robin algorithm. Furthermore, as the
process sank deeper and deeper into the priority queues, it would be run less and less frequently,
saving the CPU for short, interactive processes.

The following policy was adopted to prevent a process that needed to run for a long time when it
first started but became interactive later, from being punished forever. Whenever a carriage
return was typed at a terminal, the process belonging to that terminal was moved to the highest
priority class, on the assumption that it was about to become interactive. One fine day, some user
with a heavily CPU-bound process discovered that just sitting at the terminal and typing carriage
returns at random every few seconds did wonders for his response time. He told all his friends.
Moral of the story: getting it right in practice is much harder than getting it right in principle.

Many other algorithms have been used for assigning processes to priority classes. For example,
the influential XDS 940 system (Lampson, 1968), built at Berkeley, had four priority classes,
called terminal, 1/0, short quantum, and long quantum. When a process that was waiting for
terminal input was finally awakened, it went into the highest priority class (terminal). When a
process waiting for a disk block became ready, it went into the second class. When a process was
still running when its quantum ran out, it was initially placed in the third class. However, if a
process used up its quantum too many times in a row without blocking for terminal or other 1/0,
it was moved down to the bottom queue. Many other systems use something similar to favor
interactive users and processes over background ones.

Shortest Process Next

Because shortest job first always produces the minimum average response time for batch
systems, it would be nice if it could be used for interactive processes as well. To a certain extent,
it can be. Interactive processes generally follow the pattern of wait for command, execute
command, wait for command, execute command, and so on. If we regard the execution of each
command as a separate "job," then we could minimize overall response time by running the
shortest one first. The only problem is figuring out which of the currently runnable processes is
the shortest one.

One approach is to make estimates based on past behavior and run the process with the shortest
estimated running time. Suppose that the estimated time per command for some terminal is To.
Now suppose its next run is measured to be T;. We could update our estimate by taking a
weighted sum of these two numbers, that is, aT o + (1 a) T 1. Through the choice of a we can
decide to have the estimation process forget old runs quickly, or remember them for a long time.
With a = 1/2, we get successive estimates of
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To. To/2+T /2, To/d+T | /A+T3/2, To/8+T/8+T2/4+Ts/2

After three new runs, the weight of Tg in the new estimate has dropped to 1/8.



The technique of estimating the next value in a series by taking the weighted average of the
current measured value and the previous estimate is sometimes called aging. It is applicable to
many situations where a prediction must be made based on previous values. Aging is especially
easy to implement when a = 1/2. All that is needed is to add the new value to the current
estimate and divide the sum by 2 (by shifting it right 1 bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the users about
performance and then live up to them. One promise that is realistic to make and easy to live up
to is this: If there are n users logged in while you are working, you will receive about 1 /n of the
CPU power. Similarly, on a single-user system with n processes running, all things being equal,
each one should get 1 /n of the CPU cycles.

To make good on this promise, the system must keep track of how much CPU each process has
had since its creation. It then computes the amount of CPU each one is entitled to, namely the
time since creation divided by n. Since the amount of CPU time each process has actually had is
also known, it is straightforward to compute the ratio of actual CPU time consumed to CPU time
entitled. A ratio of 0.5 means that a process has only had half of what it should have had, and a
ratio of 2.0 means that a process has had twice as much as it was entitled to. The algorithm is
then to run the process with the lowest ratio until its ratio has moved above its closest
competitor.

Lottery Scheduling

While making promises to the users and then living up to them is a fine idea, it is difficult to
implement. However, another algorithm can be used to give similarly predictable results with a
much simpler implementation. It is called lottery scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system resources, such as CPU time.
Whenever a scheduling decision has to be made, a lottery ticket is chosen at random, and the
process holding that ticket gets the resource. When applied to CPU scheduling, the system might
hold a lottery 50 times a second, with each winner getting 20 msec of CPU time as a prize.
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To paraphrase George Orwell: "All processes are equal, but some processes are more equal.”
More important processes can be given extra tickets, to increase their odds of winning. If there
are 100 tickets outstanding, and one process holds 20 of them, it will have a 20 percent chance of
winning each lottery. In the long run, it will get about 20 percent of the CPU. In contrast to a
priority scheduler, where it is very hard to state what having a priority of 40 actually means, here
the rule is clear: a process holding a fraction f of the tickets will get about a fraction f of the
resource in question.

Lottery scheduling has several interesting properties. For example, if a new process shows up and
is granted some tickets, at the very next lottery it will have a chance of winning in proportion to
the number of tickets it holds. In other words, lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when a client process
sends a message to a server process and then blocks, it may give all of its tickets to the server,
to increase the chance of the server running next. When the server is finished, it returns the
tickets so the client can run again. In fact, in the absence of clients, servers need no tickets at all.



Lottery scheduling can be used to solve problems that are difficult to handle with other methods.
One example is a video server in which several processes are feeding video streams to their
clients, but at different frame rates. Suppose that the processes need frames at 10, 20, and 25
frames/sec. By allocating these processes 10, 20, and 25 tickets, respectively, they will
automatically divide the CPU in approximately the correct proportion, that is, 10 : 20 : 25.

Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without regard to who its
owner is. As a result, if user 1 starts up 9 processes and user 2 starts up 1 process, with round
robin or equal priorities, user 1 will get 90% of the CPU and user 2 will get only 10% of it.

To prevent this situation, some systems take into account who owns a process before scheduling
it. In this model, each user is allocated some fraction of the CPU and the scheduler picks
processes in such a way as to enforce it. Thus if two users have each been promised 50% of the
CPU, they will each get that, no matter how many processes they have in existence.

As an example, consider a system with two users, each of which has been promised 50% of the
CPU. User 1 has four processes, A, B, C, and D, and user 2 has only 1 process, E. If round-robin
scheduling is used, a possible scheduling sequence that meets all the constraints is this one:

AEBECEDEAEBECEDE...
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On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we might get
ABECDEABECDE...

Numerous other possibilities exist, of course, and can be exploited, depending on what the notion
of fairness is.

2.4.4. Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically, one or more physical
devices external to the computer generate stimuli, and the computer must react appropriately to
them within a fixed amount of time. For example, the computer in a compact disc player gets the
bits as they come off the drive and must convert them into music within a very tight time interval.
If the calculation takes too long, the music will sound peculiar. Other real-time systems are
patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, and robot control
in an automated factory. In all these cases, having the right answer but having it too late is often
just as bad as not having it at all.

Real-time systems are generally categorized as hard real time, meaning there are absolute
deadlines that must be met, or else, and soft real time, meaning that missing an occasional
deadline is undesirable, but nevertheless tolerable. In both cases, real-time behavior is achieved
by dividing the program into a number of processes, each of whose behavior is predictable and
known in advance. These processes are generally short lived and can run to completion in well
under a second. When an external event is detected, it is the job of the scheduler to schedule the
processes in such a way that all deadlines are met.

The events that a real-time system may have to respond to can be further categorized as
periodic (occurring at regular intervals) or aperiodic (occurring unpredictably). A system may



have to respond to multiple periodic event streams. Depending on how much time each event
requires for processing, it may not even be possible to handle them all. For example, if there are
m periodic events and event i occurs with period P; and requires C; seconds of CPU time to handle
each event, then the load can only be handled if

m C;
I sl

A real-time system that meets this criteria is said to be schedulable.

As an example, consider a soft real-time system with three periodic events, with periods of 100,
200, and 500 msec, respectively. If these events require 50, 30, and 100 msec of CPU time per
event, respectively, the system is schedulable because 0.5 + 0.15 + 0.2 < 1. If a fourth event
with a period of 1 sec is added, the system will remain schedulable as long as this event does not
need more than 150 msec of CPU time per event. Implicit in this calculation is the assumption
that the context-switching overhead is so small that it can be ignored.
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Real-time scheduling algorithms can be static or dynamic. The former make their scheduling
decisions before the system starts running. The latter make their scheduling decisions at run
time. Static scheduling only works when there is perfect information available in advance about
the work needed to be done and the deadlines that have to be met. Dynamic scheduling
algorithms do not have these restrictions.

2.4.5. Policy versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system belong to different
users and are thus competing for the CPU. While this is often true, sometimes it happens that one
process has many children running under its control. For example, a database management
system process may have many children. Each child might be working on a different request, or
each one might have some specific function to perform (query parsing, disk access, etc.). It is
entirely possible that the main process has an excellent idea of which of its children are the most
important (or the most time critical) and which the least. Unfortunately, none of the schedulers
discussed above accept any input from user processes about scheduling decisions. As a result, the
scheduler rarely makes the best choice.

The solution to this problem is to separate the scheduling mechanism from the scheduling
policy. What this means is that the scheduling algorithm is parameterized in some way, but the
parameters can be filled in by user processes. Let us consider the database example once again.
Suppose that the kernel uses a priority scheduling algorithm but provides a system call by which a
process can set (and change) the priorities of its children. In this way the parent can control in
detail how its children are scheduled, even though it does not do the scheduling itself. Here the
mechanism is in the kernel but policy is set by a user process.

2.4.6. Thread Scheduling

When several processes each have multiple threads, we have two levels of parallelism present:
processes and threads. Scheduling in such systems differs substantially depending on whether



user-level threads or kernel-level threads (or both) are supported.

Let us consider user-level threads first. Since the kernel is not aware of the existence of threads,
it operates as it always does, picking a process, say, A, and giving A control for its quantum. The
thread scheduler inside A decides which thread to run, say Al. Since there are no clock interrupts
to multiprogram threads, this thread may continue running as long as it wants to. If it uses up the
process' entire quantum, the kernel will select another process to run.
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When the process A finally runs again, thread A1l will resume running. It will continue to consume
all of A's time until it is finished. However, its antisocial behavior will not affect other processes.
They will get whatever the scheduler considers their appropriate share, no matter what is going
on inside process A.

Now consider the case that A's threads have relatively little work to do per CPU burst, for
example, 5 msec of work within a 50-msec quantum. Consequently, each one runs for a little
while, then yields the CPU back to the thread scheduler. This might lead to the sequence Al, A2,
A3, Al, A2, A3, Al, A2, A3, Al, before the kernel switches to process B. This situation is

illustrated in Fig. 2-28(a).

Figure 2-28. (a) Possible scheduling of user-level threads with a 50-
msec process quantum and threads that run 5 msec per CPU burst. (b)
Possible scheduling of kernel-level threads with the same
characteristics as (a).

[View full size image]

The scheduling algorithm used by the run-time system can be any of the ones described above.
In practice, round-robin scheduling and priority scheduling are most common. The only constraint
is the absence of a clock to interrupt a thread that has run too long.

Now consider the situation with kernel-level threads. Here the kernel picks a particular thread to
run. It does not have to take into account which process the thread belongs to, but it can if it
wants to. The thread is given a quantum and is forceably suspended if it exceeds the quantum.
With a 50-msec quantum but threads that block after 5 msec, the thread order for some period of
30 msec might be Al, B1, A2, B2, A3, B3, something not possible with these parameters and



user-level threads. This situation is partially depicted in Fig. 2-28(b).

A major difference between user-level threads and kernel-level threads is the performance. Doing
a thread switch with user-level threads takes a handful of machine instructions. With kernel-level
threads it requires a full context switch, changing the memory map, and invalidating the cache,
which is several orders of magnitude slower. On the other hand, with kernel-level threads, having
a thread block on 1/0 does not suspend the entire process as it does with user-level threads.
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Since the kernel knows that switching from a thread in process A to a thread in process B is more
expensive that running a second thread in process A (due to having to change the memory map
and having the memory cache spoiled), it can take this information into account when making a
decision. For example, given two threads that are otherwise equally important, with one of them
belonging to the same process as a thread that just blocked and one belonging to a different
process, preference could be given to the former.

Another important factor to consider is that user-level threads can employ an application-specific
thread scheduler. For example, consider a web server which has a dispatcher thread to accept
and distribute incoming requests to worker threads. Suppose that a worker thread has just
blocked and the dispatcher thread and two worker threads are ready. Who should run next? The
run-time system, knowing what all the threads do, can easily pick the dispatcher to run next, so it
can start another worker running. This strategy maximizes the amount of parallelism in an
environment where workers frequently block on disk 1/0. With kernel-level threads, the kernel
would never know what each thread did (although they could be assigned different priorities). In
general, however, application-specific thread schedulers can tune an application better than the
kernel can.
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2.5. Overview of Processes in MINIX 3

Having completed our study of the principles of process management, interprocess
communication, and scheduling, we can now take a look at how they are applied in MINIX 3.
Unlike UNIX, whose kernel is a monolithic program not split up into modules, MINIX 3 itself is a
collection of processes that communicate with each other and also with user processes, using a
single interprocess communication primitivemessage passing. This design gives a more modular
and flexible structure, making it easy, for example, to replace the entire file system by a
completely different one, without having even to recompile the kernel.

2.5.1. The Internal Structure of MINIX 3

Let us begin our study of MINIX 3 by taking a bird's-eye view of the system. MINIX 3 is structured
in four layers, with each layer performing a well-defined function. The four layers are illustrated in

Fig. 2-29.

Figure 2-29. MINIX 3 is structured in four layers. Only processes in the
bottom layer may use privileged (kernel mode) instructions.

(This item is displayed on page 113 in the print version)

[View full size image]

The kernel in the bottom layer schedules processes and manages the transitions between the
ready, running, and blocked states of Fig. 2-2. The kernel also handles all messages between
processes. Message handling requires checking for legal destinations, locating the send and
receive buffers in physical memory, and copying bytes from sender to receiver. Also part of the
kernel is support for access to 1/0 ports and interrupts, which on modern processors require use
of privileged kernel mode instructions not available to ordinary processes.
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In addition to the kernel itself, this layer contains two modules that function similarly to device



drivers. The clock task is an 1/0 device driver in the sense that it interacts with the hardware
that generates timing signals, but it is not user-accessible like a disk or communications line
driverit interfaces only with the kernel.

One of the main functions of layer 1 is to provide a set of privileged kernel calls to the drivers
and servers above it. These include reading and writing 1/0 ports, copying data between address
spaces, and so on. Implementation of these calls is done by the system task. Although the
system task and the clock task are compiled into the kernel's address space, they are scheduled
as separate processes and have their own call stacks.

Most of the kernel and all of the clock and system tasks are written in C. However, a small
amount of the kernel is written in assembly language. The assembly language parts deal with
interrupt handling, the low-level mechanics of managing context switches between processes
(saving and restoring registers and the like), and low-level parts of manipulating the MMU
hardware. By and large, the assembly-language code handles those parts of the kernel that deal
directly with the hardware at a very low level and which cannot be expressed in C. These parts
have to be rewritten when MINIX 3 is ported to a new architecture.

The three layers above the kernel could be considered to be a single layer because the kernel
fundamentally treats them all of them the same way. Each one is limited to user mode
instructions, and each is scheduled to run by the kernel. None of them can access 1/0 ports
directly. Furthermore, none of them can access memory outside the segments allotted to it.

However, processes potentially have special privileges (such as the ability to make kernel calls).
This is the real difference between processes in layers 2, 3, and 4. The processes in layer 2 have
the most privileges, those in layer 3 have some privileges, and those in layer 4 have no special
privileges. For example, processes in layer 2, called device drivers, are allowed to request that
the system task read data from or write data to 1/0 ports on their behalf. A driver is needed for
each device type, including disks, printers, terminals, and network interfaces. If other 1/0 devices
are present, a driver is needed for each one of those, as well. Device drivers may also make other
kernel calls, such as requesting that newly-read data be copied to the address space of a different
process.
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The third layer contains servers, processes that provide useful services to the user processes.
Two servers are essential. The process manager (PM) carries out all the MINIX 3 system calls
that involve starting or stopping process execution, such as f ork, exec, and exi t, as well as
system calls related to signals, such as al armand ki I | , which can alter the execution state of a
process. The process manager also is responsible for managing memory, for instance, with the
br k system call. The file system (FS) carries out all the file system calls, such as read, nount ,
and chdir.

It is important to understand the difference between kernel calls and POSIX system calls. Kernel
calls are low-level functions provided by the system task to allow the drivers and servers to do
their work. Reading a hardware 1/0 port is a typical kernel call. In contrast, the POSIX system
calls such as read, fork, and unl i nk are high-level calls defined by the POSIX standard, and are
available to user programs in layer 4. User programs contain many POSIX calls but no kernel
calls. Occasionally when we are not being careful with our language we may call a kernel call a
system call. The mechanisms used to make these calls are similar, and kernel calls can be
considered a special subset of system calls.

In addition to the PM and FS, other servers exist in layer 3. They perform functions that are
specific to MINIX 3. It is safe to say that the functionality of the process manager and the file
system will be found in any operating system. The information server (1S) handles jobs such as
providing debugging and status information about other drivers and servers, something that is



more necessary in a system like MINIX 3, designed for experimentation, than would be the case
for a commercial operating system which users cannot alter. The reincarnation server (RS)
starts, and if necessary restarts, device drivers that are not loaded into memory at the same time
as the kernel. In particular, if a driver fails during operation, the reincarnation server detects this
failure, kills the driver if it is not already dead, and starts a fresh copy of the driver, making the
system highly fault tolerant. This functionality is absent from most operating systems. On a
networked system the optional network server (inet) is also in level 3. Servers cannot do 1/0
directly, but they can communicate with drivers to request 1/0. Servers can also communicate
with the kernel via the system task.

As we noted at the start of Chap. 1, operating systems do two things: manage resources and
provide an extended machine by implementing system calls. In MINIX 3 the resource
management is largely done by the drivers in layer 2, with help from the kernel layer when
privileged access to 1/0 ports or the interrupt system is required. System call interpretation is
done by the process manager and file system servers in layer 3. The file system has been
carefully designed as a file "server" and could be moved to a remote machine with few changes.
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The system does not need to be recompiled to include additional servers. The process manager
and the file system can be supplemented with the network server and other servers by attaching
additional servers as required when MINIX 3 starts up or later. Device drivers, although typically
started when the system is started, can also be started later. Both device drivers and servers are
compiled and stored on disk as ordinary executable files, but when properly started up they are
granted access to the special privileges needed. A user program called service provides an
interface to the reincarnation server which manages this. Although the drivers and servers are
independent processes, they differ from user processes in that normally they never terminate
while the system is active.

We will often refer to the drivers and servers in layers 2 and 3 as system processes. Arguably,
system processes are part of the operating system. They do not belong to any user, and many if
not all of them will be activated before the first user logs on. Another difference between system
processes and user processes is that system processes have higher execution priority than user
processes. In fact, normally drivers have higher execution priority than servers, but this is not
automatic. Execution priority is assigned on a case-by-case basis in MINIX 3; it is possible for a
driver that services a slow device to be given lower priority than a server that must respond
quickly.

Finally, layer 4 contains all the user processesshells, editors, compilers, and user-written a.out
programs. Many user processes come and go as users log in, do work, and log out. A running
system normally has some user processes that are started when the system is booted and which
run forever. One of these is init, which we will describe in the next section. Also, several daemons
are likely to be running. A daemon is a background process that executes periodically or always
waits for some event, such as the arrival of a packet from the network. In a sense a daemon is a
server that is started independently and runs as a user process. Like true servers installed at
startup time, it is possible to configure a daemon to have a higher priority than ordinary user
processes.

A note about the terms task and device driver is needed. In older versions of MINIX all device
drivers were compiled together with the kernel, which gave them access to data structures
belonging to the kernel and each other. They also could all access 1/0 ports directly. They were
referred to as "tasks" to distinguish them from pure independent user-space processes. In MINIX
3, device drivers have been implemented completely in user-space. The only exception is the
clock task, which is arguably not a device driver in the same sense as drivers that can be
accessed through device files by user processes. Within the text we have taken pains to use the
term "task" only when referring to the clock task or the system task, both of which are compiled



into the kernel to function. We have been careful to replace the word "task™ with "device driver”
where we refer to user-space device drivers. However, function names, variable names, and
comments in the source code have not been as carefully updated. Thus, as you look at source
code during your study of MINIX 3 you may find the word "task” where "device driver"” is meant.
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2.5.2. Process Management in MINIX 3

Processes in MINIX 3 follow the general process model described at length earlier in this chapter.
Processes can create subprocesses, which in turn can create more subprocesses, yielding a tree of
processes. In fact, all the user processes in the whole system are part of a single tree with init
(see Fig. 2-29) at the root. Servers and drivers are a special case, of course, since some of them
must be started before any user process, including init.

MINIX 3 Startup

How does an operating system start up? We will summarize the MINIX 3 startup sequence in the
next few pages. For a look at how some other operating systems do this, see Dodge et al. (2005).

On most computers with disk devices, there is a boot disk hierarchy. Typically, if a floppy disk is
in the first floppy disk drive, it will be the boot disk. If no floppy disk is present and a CD-ROM is
present in the first CD-ROM drive, it becomes the boot disk. If there is neither a floppy disk nor a
CD-ROM present, the first hard drive becomes the boot disk. The order of this hierarchy may be
configurable by entering the BIOS immediately after powering the computer up. Additional
devices, especially other removable storage devices, may be supported as well.

When the computer is turned on, if the boot device is a diskette, the hardware reads the first
sector of the first track of the boot disk into memory and executes the code it finds there. On a
diskette this sector contains the bootstrap program. It is very small, since it has to fit in one
sector (512 bytes). The MINIX 3 bootstrap loads a larger program, boot, which then loads the
operating system itself.

In contrast, hard disks require an intermediate step. A hard disk is divided into partitions, and
the first sector of a hard disk contains a small program and the disk's partition table.
Collectively these two pieces are called the master boot record. The program part is executed
to read the partition table and to select the active partition. The active partition has a bootstrap
on its first sector, which is then loaded and executed to find and start a copy of boot in the
partition, exactly as is done when booting from a diskette.

CD-ROMs came along later in the history of computers than floppy disks and hard disks, and
when support for booting from a CD-ROM is present it is capable of more than just loading one
sector. A computer that supports booting from a CD-ROM can load a large block of data into
memory immediately. Typically what is loaded from the CD-ROM is an exact copy of a bootable
floppy disk, which is placed in memory and used as a RAM disk. After this first step control is
transferred to the RAM disk and booting continues exactly as if a physical floppy disk were the
boot device. On an older computer which has a CD-ROM drive but does not support booting from
a CD-ROM, the bootable floppy disk image can be copied to a floppy disk which can then be used
to start the system. The CD-ROM must be in the CD-ROM drive, of course, since the bootable
floppy disk image expects that.
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In any case, the MINIX 3 boot program looks for a specific multipart file on the diskette or
partition and loads the individual parts into memory at the proper locations. This is the boot
image. The most important parts are the kernel (which include the clock task and the system
task), the process manager, and the file system. Additionally, at least one disk driver must be
loaded as part of the boot image. There are several other programs loaded in the boot image.
These include the reincarnation server, the RAM disk, console, and log drivers, and init.

It should be strongly emphasized that all parts of the boot image are separate programs. After
the essential kernel, process manager and file system have been loaded many other parts could
be loaded separately. An exception is the reincarnation server. It must be part of the boot image.
It gives ordinary processes loaded after initialization the special priorities and privileges which
make them into system processes, It can also restart a crashed driver, which explains its name.
As mentioned above, at least one disk driver is essential. If the root file system is to be copied to
a RAM disk, the memory driver is also required, otherwise it could be loaded later. The tty and log
drivers are optional in the boot image. They are loaded early just because it is useful to be able to
display messages on the console and save information to a log early in the startup process. Init
could certainly be loaded later, but it controls initial configuration of the system, and it was
easiest just to include it in the boot image file.

Startup is not a trivial operation. Operations that are in the realms of the disk driver and the file

system must be performed by boot before these parts of the system are active. In a later section
we will detail how MINIX 3 is started. For now, suffice it to say that once the loading operation is

complete the kernel starts running.

During its initialization phase the kernel starts the system and clock tasks, and then the process
manager and the file system. The process manager and the file system then cooperate in starting
other servers and drivers that are part of the boot image. When all these have run and initialized
themselves, they will block, waiting for something to do. MINIX 3 scheduling prioritizes processes.
Only when all tasks, drivers, and servers loaded in the boot image have blocked will init, the first
user process, be executed. System components loaded with the boot image or during initialization
are shown in Fig. 2-30.
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Figure 2-30. Some important MINIX 3 system
components. Others such as an Ethernet driver and
the inet server may also be present.

Component Description Loaded by

kernel Kernel + clock and system tasks (in boot image)
pm Process manager (in boot image)
fs File system (in boot image)
rs (Re)starts servers and drivers (in boot image)
memory RAM disk driver (in boot image)
log Buffers log output (in boot image)

tty Console and keyboard driver (in boot image)



Component Description Loaded by

driver Disk (at, bios, or floppy) driver (in boot image)
init parent of all user processes (in boot image)
floppy Floppy driver (if booted from hard /etc/rc
disk)
is Information server (for debug /etc/rc
dumps)
cmos Reads CMOS clock to set time /etc/rc
random Random number generator /etc/rc
printer Printer driver /etc/rc

Initialization of the Process Tree

Init is the first user process, and also the last process loaded as part of the boot image. You
might think building of a process tree such as that of Fig. 1-5 begins once init starts running.
Well, not exactly. That would be true in a conventional operating system, but MINIX 3 is different.
First, there are already quite a few system processes running by the time init gets to run. The
tasks CLOCK and SYSTEM that run within the kernel are unique processes that are not visible
outside of the kernel. They receive no PIDs and are not considered part of any tree of processes.
The process manager is the first process to run in user space; it is given PID O and is neither a
child nor a parent of any other process. The reincarnation server is made the parent of all the
other processes started from the boot image (e.g., the drivers and servers). The logic of this is
that the reincarnation server is the process that should be informed if any of these should need to
be restarted.

As we will see, even after init starts running there are differences between the way a process tree
is built in MINIX 3 and the conventional concept. Init in a UNIX-like system is given PID 1, and
even though init is not the first process to run, the traditional PID 1 is reserved for it in MINIX 3.
Like all the user space processes in the boot image (except the process manager), initis made
one of the children of the reincarnation server. As in a standard UNIX-like system, init first
executes the Zetc/rc shell script. This script starts additional drivers and servers that are not
part of the boot image. Any program started by the rc script will be a child of init. One of the first
programs run is a utility called service. Service itself runs as a child of init, as would be expected.
But now things once again vary from the conventional.
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Service is the user interface to the reincarnation server. The reincarnation server starts an
ordinary program and converts it into a system process. It starts floppy (if it was not used in
booting the system), cmos (which is needed to read the real-time clock), and is, the information
server which manages the debug dumps that are produced by pressing function keys (F1, F2,
etc.) on the console keyboard. One of the actions of the reincarnation server is to adopt all
system processes except the process manager as its own children.

After the cmos device driver has been started the rc script can initialize the real-time clock. Up to
this point all files needed must be found on the root device. The servers and drivers needed
initially are in the /sbin directory; other commands needed for startup are in /bin. Once the initial
startup steps have been completed other file systems such as /usr are mounted. An important



function of the rc script is to check for file system problems that might have resulted from a
previous system crash. The test is simplewhen the system is shutdown correctly by executing the
shutdown command an entry is written to the login history file, /usr/adm/wtmp. The command
shut down C checks whether the last entry in wtmp is a shutdown entry. If not, it is assumed an
abnormal shutdown occurred, and the fsck utility is run to check all file systems. The final job of
/etc/rc is to start daemons. This may be done by subsidiary scripts. If you look at the output of a
ps axl command, which shows both PIDs and parent PIDs (PPIDs), you will see that daemons
such as update and usyslogd will normally be the among the first persistent processes which are
children of init.

Finally init reads the file /etc/ttytab, which lists all potential terminal devices. Those devices that
can be used as login terminals (in the standard distribution, just the main console and up to three
virtual consoles, but serial lines and network pseudo terminals can be added) have an entry in the
getty field of /etc/ttytab, and init forks off a child process for each such terminal. Normally, each
child executes /usr/bin/getty which prints a message, then waits for a name to be typed. If a
particular terminal requires special treatment (e.g., a dial-up line) /etc/ttytab can specify a
command (such as /usr/bin/stty) to be executed to initialize the line before running getty.

When a user types a name to log in, /usr/bin/login is called with the name as its argument. Login
determines if a password is required, and if so prompts for and verifies the password. After a
successful login, login executes the user's shell (by default /bin/sh, but another shell may be
specified in the /etc/passwd file). The shell waits for commands to be typed and then forks off a
new process for each command. In this way, the shells are the children of init, the user processes
are the grandchildren of init, and all the user processes in the system are part of a single tree. In
fact, except for the tasks compiled into the kernel and the process manager, all processes, both
system processes and user processes, form a tree. But unlike the process tree of a conventional
UNIX system, init is not at the root of the tree, and the structure of the tree does not allow one to
determine the order in which system processes were started.
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The two principal MINIX 3 system calls for process management are f ork and exec. Fork is the
only way to create a new process. Exec allows a process to execute a specified program. When a
program is executed, it is allocated a portion of memory whose size is specified in the program
file's header. It keeps this amount of memory throughout its execution, although the distribution
among data segment, stack segment, and unused can vary as the process runs.

All the information about a process is kept in the process table, which is divided up among the
kernel, process manager, and file system, with each one having those fields that it needs. When a
new process comes into existence (by f or k), or an old process terminates (by exit or a signal),
the process manager first updates its part of the process table and then sends messages to the
file system and kernel telling them to do likewise.

2.5.3. Interprocess Communication in MINIX 3

Three primitives are provided for sending and receiving messages. They are called by the C
library procedures

send(dest, &mressage);

to send a message to process dest,



recei ve(source, &nessage);

to receive a message from process source (or ANY), and

sendrec(src_dst, &message);

to send a message and wait for a reply from the same process. The second parameter in each call
is the local address of the message data. The message passing mechanism in the kernel copies
the message from the sender to the receiver. The reply (for sendr ec) overwrites the original
message. In principle this kernel mechanism could be replaced by a function which copies
messages over a network to a corresponding function on another machine, to implement a
distributed system. In practice this would be complicated somewhat by the fact that message
contents sometimes include pointers to large data structures, and a distributed system would
have to provide for copying the data itself over the network.

Each task, driver or server process is allowed to exchange messages only with certain other
processes. Details of how this is enforced will be described later. The usual flow of messages is
downward in the layers of Fig 2-29, and messages can be between processes in the same layer or
between processes in adjacent layers. User processes cannot send messages to each other. User
processes in layer 4 can initiate messages to servers in layer 3, servers in layer 3 can initiate
messages to drivers in layer 2.
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When a process sends a message to a process that is not currently waiting for a message, the
sender blocks until the destination does a r ecei ve. In other words, MINIX 3 uses the rendezvous
method to avoid the problems of buffering sent, but not yet received, messages. The advantage
of this approach is that it is simple and eliminates the need for buffer management (including the
possibility of running out of buffers). In addition, because all messages are of fixed length
determined at compile time, buffer overrun errors, a common source of bugs, are structurally
prevented.

The basic purpose of the restrictions on exchanges of messages is that if process A is allowed to
generate a send or sendr ec directed to process B, then process B can be allowed to call recei ve
with A designated as the sender, but B should not be allowed to send to A. Obviously, if A tries to
send to B and blocks, and B tries to send to A and blocks we have a deadlock. The "resource" that
each would need to complete the operations is not a physical resource like an 1/0 device, itis a
call to recei ve by the target of the message. We will have more to say about deadlocks in Chap.
3.

Occasionally something different from a blocking message is needed. There exists another
important message-passing primitive. It is called by the C library procedure

notify(dest);

and is used when a process needs to make another process aware that something important has
happened. A noti fy is nonblocking, which means the sender continues to execute whether or not
the recipient is waiting. Because it does not block, a notification avoids the possibility of a
message deadlock.



The message mechanism is used to deliver a notification, but the information conveyed is limited.
In the general case the message contains only the identity of the sender and a timestamp added
by the kernel. Sometimes this is all that is necessary. For instance, the keyboard uses a notify
call when one of the function keys (F1 to F12 and shifted F1 to F12) is pressed. In MINIX 3,
function keys are used to trigger debugging dumps. The Ethernet driver is an example of a
process that generates only one kind of debug dump and never needs to get any other
communication from the console driver. Thus a notification to the Ethernet driver from the
keyboard driver when the dump-Ethernet-stats key is pressed is unambiguous. In other cases a
notification is not sufficient, but upon receiving a notification the target process can send a
message to the originator of the notification to request more information.

There is a reason notification messages are so simple. Because a noti fy call does not block, it can
be made when the recipient has not yet done a r ecei ve. But the simplicity of the message means
that a notification that cannot be received is easily stored so the recipient can be informed of it
the next time the recipient calls recei ve. In fact, a single bit suffices. Notifications are meant for
use between system processes, of which there can be only a relatively small number. Every
system process has a bitmap for pending notifications, with a distinct bit for every system
process. So if process A needs to send a notification to process B at a time when process B is not
blocked on a receive, the message-passing mechanism sets a bit which corresponds to A in B's
bitmap of pending notifications. When B finally does a r ecei ve, the first step is to check its
pending notifications bitmap. It can learn of attempted notifications from multiple sources this
way. The single bit is enough to regenerate the information content of the notification. It tells the
identity of the sender, and the message passing code in the kernel adds the timestamp when it is
delivered. Timestamps are used primarily to see if timers have expired, so it does not matter that
the timestamp may be for a time later than the time when the sender first tried to send the
notification.
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There is a further refinement to the notification mechanism. In certain cases an additional field of
the notification message is used. When the notification is generated to inform a recipient of an
interrupt, a bitmap of all possible sources of interrupts is included in the message. And when the
notification is from the system task a bitmap of all pending signals for the recipient is part of the
message. The natural question at this point is, how can this additional information be stored when
the notification must be sent to a process that is not trying to receive a message? The answer is
that these bitmaps are in kernel data structures. They do not need to be copied to be preserved.
If a notification must be deferred and reduced to setting a single bit, when the recipient
eventually does a r ecei ve and the notification message is regenerated, knowing the origin of the
notification is enough to specify which additional information needs to be included in the message.
And for the recipient, the origin of the notification also tells whether or not the message contains
additional information, and, if so, how it is to be interpreted,

A few other primitives related to interprocess communication exist. They will be mentioned in a
later section. They are less important than send, recei ve, sendrec, and noti fy.

2.5.4. Process Scheduling in MINIX 3

The interrupt system is what keeps a multiprogramming operating system going. Processes block
when they make requests for input, allowing other processes to execute. When input becomes
available, the current running process is interrupted by the disk, keyboard, or other hardware.
The clock also generates interrupts that are used to make sure a running user process that has
not requested input eventually relinquishes the CPU, to give other processes their chance to run.
It is the job of the lowest layer of MINIX 3 to hide these interrupts by turning them into
messages. As far as processes are concerned, when an 1/0 device completes an operation it



sends a message to some process, waking it up and making it eligible to run.
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Interrupts are also generated by software, in which case they are often called traps. The send
and r ecei ve operations that we described above are translated by the system library into
software interrupt instructions which have exactly the same effect as hardware-generated
interruptsthe process that executes a software interrupt is immediately blocked and the kernel is
activated to process the interrupt. User programs do not refer to send or r ecei ve directly, but any
time one of the system calls listed in Fig. 1-9 is invoked, either directly or by a library routine,
sendr ec is used internally and a software interrupt is generated.

Each time a process is interrupted (whether by a conventional 1/0 device or by the clock) or due
to execution of a software interrupt instruction, there is an opportunity to redetermine which
process is most deserving of an opportunity to run. Of course, this must be done whenever a
process terminates, as well, but in a system like MINIX 3 interruptions due to 1/0 operations or
the clock or message passing occur more frequently than process termination.

The MINIX 3 scheduler uses a multilevel queueing system. Sixteen queues are defined, although
recompiling to use more or fewer queues is easy. The lowest priority queue is used only by the
IDLE process which runs when there is nothing else to do. User processes start by default in a
queue several levels higher than the lowest one.

Servers are normally scheduled in queues with priorities higher than allowed for user processes,
drivers in queues with priorities higher than those of servers, and the clock and system tasks are
scheduled in the highest priority queue. Not all of the sixteen available queues are likely to be in
use at any time. Processes are started in only a few of them. A process may be moved to a
different priority queue by the system or (within certain limits) by a user who invokes the nice
command. The extra levels are available for experimentation, and as additional drivers are added
to MINIX 3 the default settings can be adjusted for best performance. For instance, if it were
desired to add a server to stream digital audio or video to a network, such a server might be
assigned a higher starting priority than current servers, or the initial priority of a current server or
driver might be reduced in order for the new server to achieve better performance.

In addition to the priority determined by the queue on which a process is placed, another
mechanism is used to give some processes an edge over others. The quantum, the time interval
allowed before a process is preempted, is not the same for all processes. User processes have a
relatively low quantum. Drivers and servers normally should run until they block. However, as a
hedge against malfunction they are made preemptable, but are given a large quantum. They are
allowed to run for a large but finite number of clock ticks, but if they use their entire quantum
they are preempted in order not to hang the system. In such a case the timed-out process will be
considered ready, and can be put on the end of its queue. However, if a process that has used up
its entire quantum is found to have been the process that ran last, this is taken as a sign it may
be stuck in a loop and preventing other processes with lower priority from running. In this case its
priority is lowered by putting it on the end of a lower priority queue. If the process times out
again and another process still has not been able to run, its priority will again be lowered.
Eventually, something else should get a chance to run.
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A process that has been demoted in priority can earn its way back to a higher priority queue. If a
process uses all of its quantum but is not preventing other processes from running it will be
promoted to a higher priority queue, up to the maximum priority permitted for it. Such a process
apparently needs its quantum, but is not being inconsiderate of others.



Otherwise, processes are scheduled using a slightly modified round robin. If a process has not
used its entire quantum when it becomes unready, this is taken to mean that it blocked waiting
for 1/0, and when it becomes ready again it is put on the head of the queue, but with only the
left-over part of its previous quantum. This is intended to give user processes quick response to
1/0. A process that became unready because it used its entire quantum is placed at the end of the
queue in pure round robin fashion.

With tasks normally having the highest priority, drivers next, servers below drivers, and user
processes last, a user process will not run unless all system processes have nothing to do, and a
system process cannot be prevented from running by a user process.

When picking a process to run, the scheduler checks to see if any processes are queued in the
highest priority queue. If one or more are ready, the one at the head of the queue is run. If none
is ready the next lower priority queue is similarly tested, and so on. Since drivers respond to
requests from servers and servers respond to requests from user processes, eventually all high
priority processes should complete whatever work was requested of them. They will then block
with nothing to do until user processes get a turn to run and make more requests. If no process is
ready, the IDLE process is chosen. This puts the CPU in a low-power mode until the next interrupt
occurs.

At each clock tick, a check is made to see if the current process has run for more than its allotted
quantum. If it has, the scheduler moves it to the end of its queue (which may require doing
nothing if it is alone on the queue). Then the next process to run is picked, as described above.
Only if there are no processes on higher-priority queues and if the previous process is alone on its
queue will it get to run again immediately. Otherwise the process at the head of the highest
priority nonempty queue will run next. Essential drivers and servers are given such large quanta
that normally they are normally never preempted by the clock. But if something goes wrong their
priority can be temporarily lowered to prevent the system from coming to a total standstill.
Probably nothing useful can be done if this happens to an essential server, but it may be possible
to shut the system down gracefully, preventing data loss and possibly collecting information that

e prcy NEXT



k=2
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2.6. Implementation of Processes in MINIX 3

We are now moving closer to looking at the actual code, so a few words about the notation we will
use are perhaps in order. The terms "procedure,"” "function,”™ and "routine" will be used
interchangeably. Names of variables, procedures, and files will be written in italics, as in rw_flag.
When a variable, procedure, or file name starts a sentence, it will be capitalized, but the actual
names begin with lower case letters. There are a few exceptions, the tasks which are compiled
into the kernel are identified by upper case names, such as CLOCK, SYSTEM, and IDLE. System
calls will be in lower case Helvetica, for example, r ead.

The book and the software, both of which are continuously evolving, did not "go to press” on the
same day, so there may be minor discrepancies between the references to the code, the printed
listing, and the CD-ROM version. Such differences generally only affect a line or two, however.
The source code printed in the book has been simplified by omitting code used to compile options
that are not discussed in the book. The complete version is on the CD-ROM. The MINIX 3 Web site
(www.minix3.0rg) has the current version, which has new features and additional software and
documentation.

2.6.1. Organization of the MINIX 3 Source Code

The implementation of MINIX 3 as described in this book is for an IBM PC-type machine with an
advanced processor chip (e.g., 80386, 80486, Pentium, Pentium Pro, 11, 111, 4, M, or D) that uses
32-bit words. We will refer to all of these as Intel 32-bit processors. The full path to the C
language source code on a standard Intel-based platform is /usr/src/ (a trailing "/" in a path
name indicates that it refers to a directory). The source directory tree for other platforms may be
in a different location. Throughout the book, MINIX 3 source code files will be referred to using a
path starting with the top src/ directory. An important subdirectory of the source tree is
src/include/, where the master copy of the C header files are located. We will refer to this
directory as include/.

Each directory in the source tree contains a file named Makefile which directs the operation of
the UNIX-standard make utility. The Makefile controls compilation of files in its directory and may
also direct compilation of files in one or more subdirectories. The operation of make is complex
and a full description is beyond the scope of this section, but it can be summarized by saying that
make manages efficient compilation of programs involving multiple source files. Make assures
that all necessary files are compiled. It tests previously compiled modules to see if they are up to
date and recompiles any whose source files have been modified since the previous compilation.
This saves time by avoiding recompilation of files that do not need to be recompiled. Finally, make
directs the combination of separately compiled modules into an executable program and may also
manage installation of the completed program.
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All or part of the src/ tree can be relocated, since the Makefile in each source directory uses a
relative path to C source directories. For instance, you may want to make a source directory on
the root filesystem, /src/, for speedy compilation if the root device is a RAM disk. If you are
developing a special version you can make a copy of src/ under another name.



The path to the C header files is a special case. During compilation every Makefile expects to find
header files in /usr/include/ (or the equivalent path on a non-Intel platform). However,
src/tools/Makefile, used to recompile the system, expects to find a master copy of the headers in
/usr/src/include (on an Intel system). Before recompiling the system, however, the entire
/usr/include/ directory tree is deleted and /usr/src/include/ is copied to /usr/include/. This was
done to make it possible to keep all files needed in the development of MINIX 3 in one place. This
also makes it easy to maintain multiple copies of the entire source and headers tree for
experimenting with different configurations of the MINIX 3 system. However, if you want to edit a
header file as part of such an experiment, you must be sure to edit the copy in the src/include
directory and not the one in /usr/include/.

This is a good place to point out for newcomers to the C language how file names are quoted in a
#i ncl ude statement. Every C compiler has a default header directory where it looks for include
files. Frequently, this is /usr/include/. When the name of a file to include is quoted between less-
than and greater-than symbols ("< ... =>") the compiler searches for the file in the default header
directory or a specified subdirectory, for example,

#incl ude <fil enane>

includes a file from /usr/include/.

Many programs also require definitions in local header files that are not meant to be shared
system-wide. Such a header may have the same name as and be meant to replace or supplement
a standard header. When the name is quoted between ordinary quote characters (" ... ") the
file is searched for first in the same directory as the source file (or a specified subdirectory) and
then, if not found there, in the default directory. Thus

#i nclude ''fil ename'"’

reads a local file.

The include/ directory contains a number of POSIX standard header files. In addition, it has three
subdirectories:

sys/ additional POSIX headers.

minix/ header files used by the MINIX 3 operating
system.

ibm/ header files with IBM PC-specific definitions.

To support extensions to MINIX 3 and programs that run in the MINIX 3 environment, other files
and subdirectories are also present in include/ as provided on the CD-ROM and also on the MINIX
3 Web site. For instance, include/arpa/ and the include/net/ directory and its subdirectory
include/net/gen/ support network extensions. These are not necessary for compiling the basic
MINIX 3 system, and files in these directories are not listed in Appendix B.
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In addition to src/include/, the src/ directory contains three other important subdirectories with
operating system source code:



kernel/ layer 1 (scheduling, messages, clock and system

tasks).

drivers/ layer 2 (device drivers for disk, console, printer,
etc.).

servers/ layer 3 (process manager, file system, other
servers).

Three other source code directories are not printed or discussed in the text, but are essential to
producing a working system:

src/lib/ source code for library procedures (e.g., open,
read).

src/tools/ Makefile and scripts for building the MINIX 3
system.

src/boot/ the code for booting and installing MINIX 3.

The standard distribution of MINIX 3 includes many additional source files not discussed in this
text. In addition to the process manager and file system source code, the system source directory
src/servers/ contains source code for the init program and the reincarnation server, rs, both of
which are essential parts of a running MINIX 3 system. The network server source code is in
src/servers/inet/. Src/drivers/ has source code for device drivers not discussed in this text,
including alternative disk drivers, sound cards, and network adapters. Since MINIX 3 is an
experimental operating system, meant to be modified, there is a src/test/ directory with
programs designed to test thoroughly a newly compiled MINIX 3 system. An operating system
exists, of course, to support commands (programs) that will run on it, so there is a large
src/commands/ directory with source code for the utility programs (e.g., cat, cp, date, Is, pwd
and more than 200 others). Source code for some major open source applications originally
developed by the GNU and BSD projects is here, too.

The "book" version of MINIX 3 is configured with many of the optional parts omitted (trust us: we
cannot fit everything into one book or into your head in a semester-long course). The "book"
version is compiled using modified Makefile s that do not refer to unnecessary files. (A standard
Makefile requires that files for optional components be present, even if not to be compiled.)
Omitting these files and the conditional statements that select them makes reading the code
easier.

For convenience we will usually refer to simple file names when it it is clear from the context what
the complete path is. However, be aware that some file names appear in more than one
directory. For instance, there are several files named const.h. Src/kernel/const.h defines
constants used in the kernel, while src/servers/pm/const.h defines constants used by the process
manager, etc.
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The files in a particular directory will be discussed together, so there should not be any confusion.
The files are listed in Appendix B in the order they are discussed in the text, to make it easier to
follow along. Acquisition of a couple of bookmarks might be of use at this point, so you can go
back and forth between the text and the listing. To keep the size of the listing reasonable, code
for every file is not printed. In general, those functions that are described in detail in the text are



listed in Appendix B; those that are just mentioned in passing are not listed, but the complete
source is on the CD-ROM and Web site, both of which also provide an index to functions,
definitions, and global variables in the source code.

Appendix C contains an alphabetical list of all files described in Appendix B, divided into sections
for headers, drivers, kernel, file system, and process manager. This appendix and the Web site
and CD-ROM indices reference the listed objects by line number in the source code.

The code for layer 1 is contained in the directory src/kernel/. Files in this directory support
process control, the lowest layer of the MINIX 3 structure we saw in Fig. 2-29. This layer includes
functions which handle system initialization, interrupts, message passing and process scheduling.
Intimately connected with these are two modules compiled into the same binary, but which run as
independent processes. These are the system task which provides an interface between kernel
services and processes in higher layers, and the clock task which provides timing signals to the
kernel. In Chap. 3, we will look at files in several of the subdirectories of src/drivers, which
support various device drivers, the second layer in Fig. 2-29. Then in Chap. 4, we will look at the
process manager files in src/servers/pm/. Finally, in Chap. 5, we will study the file system, whose
source files are located in src/servers/fs/.

2.6.2. Compiling and Running MINIX 3

To compile MINIX 3, run nmake in src/tools/. There are several options, for installing MINIX 3 in
different ways. To see the possibilities run make with no argument. The simplest method is nmake
i mage.

When neke i nage is executed, a fresh copy of the header files in src/include/ is copied to
/usr/include/. Then source code files in src/kernel/ and several subdirectories of src/servers/ and
src/drivers/ are compiled to object files. All the object files in src/kernel/ are linked to form a
single executable program, kernel. The object files in src/servers/pm/ are also linked together to
form a single executable program, pm, and all the object files in src/servers/fs/ are linked to form
fs. The additional programs listed as part of the boot image in Fig. 2-30 are also compiled and
linked in their own directories. These include rs and init in subdirectories of src/servers/ and
memory/, log/, and tty/ in subdirectories of src/drivers/. The component designated "driver" in
Fig. 2-30 can be one of several disk drivers; we discuss here a MINIX 3 system configured to boot
from the hard disk using the standard at_wini driver, which will be compiled in
src/drivers/at_wini/. Other drivers can be added, but most drivers need not be compiled into the
boot image. The same is true for networking support; compilation of the basic MINIX 3 system is
the same whether or not networking will be used.
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To install a working MINIX 3 system capable of being booted, a program called installboot (whose
source is in src/boot/) adds names to kernel, pm, fs, init, and the other components of the boot
image, pads each one out so that its length is a multiple of the disk sector size (to make it easier
to load the parts independently), and concatenates them onto a single file. This new file is the
boot image and can be copied into the /boot/ directory or the /boot/image/ directory of a floppy
disk or a hard disk partition. Later, the boot monitor program can load the boot image and
transfer control to the operating system.
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Figure 2-31 shows the layout of memory after the concatenated programs are separated and
loaded. The kernel is loaded in low memory, all the other parts of the boot image are loaded



above 1 MB. When user programs are run, the available memory above the kernel will be used
first. When a new program will not fit there, it will be loaded in the high memory range, above
init. Details, of course, depend upon the system configuration. For instance, the example in the
figure is for a MINIX 3 file system configured with a block cache that can hold 512 4-KB disk
blocks. This is a modest amount; more is recommended if adequate memory is available. On the
other hand, if the size of the block cache were reduced drastically it would be possible to make
the entire system fit into less than 640K of memory, with room for a few user processes as well.

Figure 2-31. Memory layout after MINIX 3 has been loaded from the
disk into memory. The kernel, servers, and drivers are independently
compiled and linked programs, listed on the left. Sizes are
approximate and not to scale.

(This item is displayed on page 129 in the print version)



It is important to realize that MINIX 3 consists of several totally independent programs that
communicate only by passing messages. A procedure called panic in the directory src/servers/fs/
does not conflict with a procedure called panic in src/servers/pm/ because they ultimately are
linked into different executable files. The only procedures that the three pieces of the operating
system have in common are a few of the library routines in src/lib/. This modular structure makes
it very easy to modify, say, the file system, without having these changes affect the process
manager. It also makes it straightforward to remove the file system altogether and to put it on a
different machine as a file server, communicating with user machines by sending messages over a
network.

As another example of the modularity of MINIX 3, adding network support makes absolutely no
difference to the process manager, the file system, or the kernel. Both an Ethernet driver and the
inet server can be activated after the boot image is loaded; they would appear in Fig. 2-30 with



the processes started by /etc/rc, and they would be loaded into one of the "Memory available for
user programs” regions of Fig. 2-31. A MINIX 3 system with networking enabled can be used as a
remote terminal or an ftp and web server. Only if you want to allow incoming logins to the MINIX
3 system over the network would any part of MINIX 3 as described in the text need modification:
this is tty, the console driver, which would need to be recompiled with pseudo terminals
configured to allow remote logins.

2.6.3. The Common Header Files

The include/ directory and its subdirectories contain a collection of files defining constants,
macros, and types. The POSIX standard requires many of these definitions and specifies in which
files of the main include/ directory and its subdirectory include/sys/ each required definition is to
be found. The files in these directories are header or include files, identified by the suffix .h, and
used by means of #i ncl ude statements in C source files. These statements are a built-in feature
of the C language. Include files make maintenance of a large system easier.
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Headers likely to be needed for compiling user programs are mainly found in include/ whereas
include/sys/ traditionally is used for files that are used primarily for compiling system programs
and utilities. The distinction is not terribly important, and a typical compilation, whether of a user
program or part of the operating system, will include files from both of these directories. We will
discuss here the files that are needed to compile the standard MINIX 3 system, first treating those
in include/ and then those in include/sys/. In the next section we will discuss files in the
include/minix/ and include/ibm/ directories, which, as the directory names indicate, are unique to
MINIX 3 and its implementation on IBM-type (really, Intel-type) computers.

The first headers to be considered are truly general purpose ones, so much so that they are not
referenced directly by any of the C language source files for the MINIX 3 system. Rather, they are
themselves included in other header files. Each major component of MINIX 3 has a master header
file, such as src/kernel/kernel.h, src/servers/pm/pm.h, and src/servers/fs/fs.h. These are included
in every compilation of these components. Source code for each of the device drivers includes a
somewhat similar file, src/drivers/drivers.h. Each master header is tailored to the needs of the
corresponding part of the MINIX 3 system, but each one starts with a section like the one shown
in Fig. 2-32 and includes most of the files shown there. The master headers will be discussed
again in other sections of the book. This preview is to emphasize that headers from several
directories are used together. In this section and the next one we will mention each of the files
referenced in Fig. 2-32.

Figure 2-32. Part of a master header which ensures inclusion of header
files needed by all C source files. Note that two const.h files, one from
the include/ tree and one from the local directory, are referenced.



#i ncl ude <m ni x/ config. h> /* MJST be first */
#i ncl ude <ansi. h> /* MJST be second */
#include <limts. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>

#i ncl ude <m ni x/ const. h>

#i ncl ude <m ni x/type. h>

#i ncl ude <m ni x/ syslib. h>

#i ncl ude "const.h"

Let us start with the first header in include/, ansi.h (line 0000). This is the second header that is
processed whenever any part of the MINIX 3 system is compiled; only include/minix/config.h is
processed earlier. The purpose of ansi.h is to test whether the compiler meets the requirements
of Standard C, as defined by the International Organization for Standards. Standard C is also
often referred to as ANSI C, since the standard was originally developed by the American National
Standards Institute before gaining international recognition. A Standard C compiler defines
several macros that can then be tested in programs being compiled. _ STDC___is such a macro,
and it is defined by a standard compiler to have a value of 1, just as if the C preprocessor had
read a line like
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#define_ STDC 1

The compiler distributed with current versions of MINIX 3 conforms to Standard C, but older
versions of MINIX were developed before the adoption of the standard, and it is still possible to
compile MINIX 3 with a classic (Kernighan & Ritchie) C compiler. It is intended that MINIX 3
should be easy to port to new machines, and allowing older compilers is part of this. At lines 0023
to 0025 the statement

#define _ANSI

is processed if a Standard C compiler is in use. Ansi.h defines several macros in different ways,
depending upon whether the _ANSI macro is defined. This is an example of a feature test
macro.

Another feature test macro defined here is _POSIX_SOURCE (line 0065). This is required by
POSIX. Here we ensure it is defined if other macros that imply POSIX conformance are defined.

When compiling a C program the data types of the arguments and the returned values of
functions must be known before code that references such data can be generated. In a complex
system ordering of function definitions to meet this requirement is difficult, so C allows use of
function prototypes to declare the arguments and return value types of a function before it is
defined. The most important macro in ansi.h is _PROTOTYPE. This macro allows us to write
function prototypes in the form

_PROTOTYPE (return-type function-nane, (argunment-type argunment, ... ) )



and have this transformed by the C preprocessor into

return-type function-nanme(argunent-type, argunent, ...)

if the compiler is an ANSI Standard C compiler, or

return-type function-name()

if the compiler is an old-fashioned (i.e., Kernighan & Ritchie) compiler.

Before we leave ansi.h let us mention one additional feature. The entire file (except for initial
comments) is enclosed between lines that read
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#i fndef _ANSI _H

and

#endif /* _ANSI _H */

On the line immediately following the #i f ndef _ANSI _Hitself is defined. A header file should be
included only once in a compilation; this construction ensures that the contents of the file will be
ignored if it is included multiple times. We will see this technique used in all the header files in the
include/ directory.

Two points about this deserve mention. First, in all of the #i f ndef ... #define sequences for files
in the master header directories, the filename is preceded by an underscore. Another header with
the same name may exist within the C source code directories, and the same mechanism will be
used there, but underscores will not be used. Thus inclusion of a file from the master header
directory will not prevent processing of another header file with the same name in a local
directory. Second, note that the comment /* _ANSI _H */ after the #i f ndef is not required. Such
comments can be helpful in keeping track of nested #i f ndef ... #endif and #i fdef ... #endif
sections. However, care is needed in writing such comments: if incorrect they are worse than no
comment at all.

The second file in include/ that is indirectly included in most MINIX 3 source files is the limits.h
header (line 0100). This file defines many basic sizes, both language types such as the number of
bits in an integer, as well as operating system limits such as the length of a file name.

Note that for convenience, the line numbering in Appendix B is ratcheted up to the next multiple
of 100 when a new file is listed. Thus do not expect ansi.h to contain 100 lines (00000 through
00099). In this way, small changes to one file will (probably) not affect subsequent files in a
revised listing. Also note that when a new file is encountered in the listing, a special three-line
header consisting of a row of + signs, the file name, and another row of + signs is present
(without line numbering). An example of this header is shown between lines 00068 and 00100.

Errno.h (line 0200), is also included by most of the master headers. It contains the error numbers



that are returned to user programs in the global variable errno when a system call fails. Errno is
also used to identify some internal errors, such as trying to send a message to a nonexistent task.
Internally, it would be inefficient to examine a global variable after a call to a function that might
generate an error, but functions must often return other integers, for instance, the number of
bytes transferred during an 1/0 operation. The MINIX 3 solution is to return error numbers as
negative values to mark them as error codes within the system, and then to convert them to
positive values before being returned to user programs. The trick that is used is that each error
code is defined in a line like

#defi ne EPERM (_SI GN 1)

(line 0236). The master header file for each part of the operating system defines the _SYSTEM
macro, but _SYSTEM is never defined when a user program is compiled. If _SYSTEM is defined,
then _SIGN is defined as "-"; otherwise it is given a null definition.
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The next group of files to be considered are not included in all the master headers, but are
nevertheless used in many source files in all parts of the MINIX 3 system. The most important is
unistd.h (line 0400). This header defines many constants, most of which are required by POSIX.
In addition, it includes prototypes for many C functions, including all those used to access MINIX 3
system calls. Another widely used file is string.h (line 0600), which provides prototypes for many
C functions used for string manipulation. The header signal.h (line 0700) defines the standard
signal names. Several MINIX 3-specific signals for operating system use are defined, as well. The
fact that operating systems functions are handled by independent processes rather than within a
monolithic kernel requires some special signal-like communication between the system
components. Signal.h also contains prototypes for some signal-related functions. As we will see
later, signal handling involves all parts of MINIX 3.

Fcentl.h (line 0900) symbolically defines many parameters used in file control operations. For
instance, it allows one to use the macro O _RDONLY instead of the numeric value O as a
parameter to a open call. Although this file is referenced mostly by the file system, its definitions
are also needed in a number of places in the kernel and the process manager.

As we will see when we look at the device driver layer in Chap. 3, the console and terminal
interface of an operating system is complex, because many different types of hardware have to
interact with the operating system and user programs in a standardized way. Termios.h (line
1000) defines constants, macros, and function prototypes used for control of terminal-type 170
devices. The most important structure is the termios structure. It contains flags to signal various
modes of operation, variables to set input and output transmission speeds, and an array to hold
special characters (e.g., the INTR and KILL characters). This structure is required by POSIX, as
are many of the macros and function prototypes defined in this file.

However, as all-encompassing as the POSIX standard is meant to be, it does not provide
everything one might want, and the last part of the file, from line 1140 onward, provides
extensions to POSIX. Some of these are of obvious value, such as extensions to define standard
baud rates of 57,600 baud and higher, and support for terminal display screen windows. The
POSIX standard does not forbid extensions, as no reasonable standard can ever be all-inclusive.
But when writing a program in the MINIX 3 environment which is intended to be portable to other
environments, some caution is required to avoid the use of definitions specific to MINIX 3. This is
fairly easy to do. In this file and other files that define MINIX 3-specific extensions the use of the
extensions is controlled by the

#ifdef _MN X



statement. If the macro _MINIX is not defined, the compiler will not even see the MINIX 3
extensions; they will all be completely ignored.
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Watchdog timers are supported by timers.h (line 1300), which is included in the kernel's master
header. It defines a struct timer, as well as prototypes of functions used to operate on lists of
timers. On line 1321 appears a typedef for tmr _func_t. This data type is a pointer to a function.
At line 1332 its use is seen: within a timer structure, used as an element in a list of timers, one
element is a tmr _func_t to specify a function to be called when the timer expires.

We will mention four more files in the include/ directory that are not listed in Appendix B. Stdlib.h
defines types, macros, and function prototypes that are likely to be needed in the compilation of
all but the most simple of C programs. It is one of the most frequently used headers in compiling
user programs, although within the MINIX 3 system source it is referenced by only a few files in
the kernel. Stdio.h is familiar to everyone who has started to learn programming in C by writing
the famous "Hello World!" program. It is hardly used at all in system files, although, like stdlib.h,
it is used in almost every user program. A.out.h defines the format of the files in which executable
programs are stored on disk. An exec structure is defined here, and the information in this
structure is used by the process manager to load a new program image when an exec call is
made. Finally, stddef.h defines a few commonly used macros.

Now let us go on to the subdirectory include/sys/. As shown in Fig. 2-32, the master headers for
the main parts of the MINIX 3 system all cause sys/types.h (line 1400) to be read immediately
after reading ansi.h. Sys/types.h defines many data types used by MINIX 3. Errors that could
arise from misunderstanding which fundamental data types are used in a particular situation can
be avoided by using the definitions provided here. Fig. 2-33 shows the way the sizes, in bits, of a
few types defined in this file differ when compiled for 16-bit or 32-bit processors. Note that all
type names end with "_t". This is not just a convention; it is a requirement of the POSIX
standard. This is an example of a reserved suffix, and "_t" should not be used as a suffix of any
name which is not a type name.

Figure 2-33. The size, in bits,
of some types on 16-bit and
32-bit systems.

Type 16-Bit 32-Bit
MINIX MINIX
gid_t 8 8
dev_t 16 16
pid_t 16 32
ino_t 16 32

MINIX 3 currently runs natively on 32-bit microprocessors, but 64-bit processors-will be
increasingly important in the future. A type that is not provided by the hardware can be



synthesized if necessary. On line 1471 the u64_t type is defined as struct {u32_t[2]}. This type
is not needed very often in the current implementation, but it can be usefulfor instance, all disk
and partition data (offsets and sizes) is stored as 64 bit numbers, allowing for very large disks.
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MINIX 3 uses many type definitions that ultimately are interpreted by the compiler as a relatively
small number of common types. This is intended to help make the code more readable; for
instance, a variable declared as the type dev _t is recognizable as a variable meant to hold the
major and minor device numbers that identify an 1/0 device. For the compiler, declaring such a
variable as a short would work equally well. Another thing to note is that many of the types
defined here are matched by corresponding types with the first letter capitalized, for instance, dev
_tand Dev _t. The capitalized variants are all equivalent to type int to the compiler; these are
provided to be used in function prototypes which must use types compatible with the int type to
support K&R compilers. The comments in types.h explain this in more detail.

One other item worth mention is the section of conditional code that starts with

#if _EMWBI ZE ==

(lines 1502 to 1516). As noted earlier, most conditional code has been removed from the source
as discussed in the text. This example was retained so we could point out one way that
conditional definitions can be used. The macro used, _EM _WSIZE, is another example of a
compiler-defined feature test macro. It tells the word size for the target system in bytes. The #i f

#el se ... #endif sequence is a way of getting some definitions right once and for all, to
make subsequent code compile correctly whether a 16-bit or 32-bit system is in use.

Several other files in include/sys/ are widely used in the MINIX 3 system. The file sys/sigcontext.h
(line 1600) defines structures used to preserve and restore normal system operation before and
after execution of a signal handling routine and is used both in the kernel and the process
manager. Sys/stat.h (line 1700) defines the structure which we saw in Fig. 1-12, returned by the
stat and fstat system calls, as well as the prototypes of the functions stat and fstat and other
functions used to manipulate file properties. It is referenced in several parts of the file system and
the process manager.

Other files we will discuss in this section are not as widely referenced as the ones discussed
above. Sys/dir.h (line 1800) defines the structure of a MINIX 3 directory entry. It is only
referenced directly once, but this reference includes it in another header that is widely used in the
file system. It is important because, among other things, it tells how many characters a file name
may contain (60). The sys/wait.h (line 1900) header defines macros used by the wai t and

wai t pi d system calls, which are implemented in the process manager.

Several other files in include/sys/ should be mentioned, although they are not listed in Appendix
B. MINIX 3 supports tracing executables and analyzing core dumps with a debugger program, and
sys/ptrace.h defines the various operations possible with the ptrace system call. Sys/svrctl.h
defines data structures and macros used by svrct |, which is not really a system call, but is used
like one. Svrct | is used to coordinate server-level processes as the system starts up. The sel ect
system call permits waiting for input on multiple channelsfor instance, pseudo terminals waiting
for network connections. Definitions needed by this call are in sys/select.h.
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We have deliberately left discussion of sys/ioctl.h and related files until last, because they cannot



be fully understood without also looking at a file in the next directory, minix/ioctl.h. The i oct |
system call is used for device control operations. The number of devices which can be interfaced
with a modern computer system is ever increasing. All need various kinds of control. Indeed, the
main difference between MINIX 3 as described in this book and other versions is that for purposes
of the book we describe MINIX 3 with relatively few input/output devices. Many others, such as
network interfaces, SCSI controllers, and sound cards, can be added.

To make things more manageable, a number of small files, each containing one group of
definitions, are used. They are all included by sys/ioctl.h (line 2000), which functions similarly to
the master header of Fig. 2-32. We have listed only one of these included files, sys/ioc_disk.h
(line 2100), in Appendix B. This and the other files included by sys _ioctl.h are located in the
include/sys/ directory because they are considered part of the "published interface,” meaning a
programmer can use them in writing any program to be run in the MINIX 3 environment.
However, they all depend upon additional macro definitions provided in minix/ioctl.h (line 2200),
which is included by each. Minix/ioctl.h should not be used by itself in writing programs, which is
why it is in include/minix/ rather than include/sys/.

The macros defined together by these files define how the various elements needed for each
possible function are packed into a 32 bit integer to be passed to i oct| . For instance, disk devices
need five types of operations, as can be seen in sys/ioc _disk.h at lines 2110 to 2114. The
alphabetic 'd' parameter tells i oct| that the operation is for a disk device, an integer from 3
through 7 codes for the operation, and the third parameter for a write or read operation tells the
size of the structure in which data is to be passed. In minix/ioctl.h lines 2225 to 2231 show that 8
bits of the alphabetic code are shifted 8 bits to the left, the 13 least significant bits of the size of
the structure are shifted 16 bits to the left, and these are then logically ANDed with the small
integer operation code. Another code in the most significant 3 bits of a 32-bit number encodes the
type of return value.

Although this looks like a lot of work, this work is done at compile time and makes for a much
more efficient interface to the system call at run time, since the parameter actually passed is the
most natural data type for the host machine CPU. It does, however, bring to mind a famous
comment Ken Thompson put into the source code of an early version of UNIX:

/* You are not expected to understand this */

Minix/ioctl.h also contains the prototype for the i oct| system call at line 2241. This call is not
directly invoked by programmers in many cases, since the POSIX defined functions prototyped in
include/termios.h have replaced many uses of the old ioctl library function for dealing with
terminals, consoles, and similar devices. Nevertheless, it is still necessary. In fact, the POSIX
functions for control of terminal devices are converted into i oct| system calls by the library.
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2.6.4. The MINIX 3 Header Files

The subdirectories include/minix/ and include/ibm/ contain header files specific to MINIX 3. Files
in include/minix/ are needed for an implementation of MINIX 3 on any platform, although there
are platform-specific alternative definitions within some of them. We have already discussed one
file here, ioctl.h. The files in include/ibm/ define structures and macros that are specific to MINIX
3 as implemented on IBM-type machines.

We will start with the minix/ directory. In the previous section, it was noted that config.h (line
2300) is included in the master headers for all parts of the MINIX 3 system, and is thus the first
file actually processed by the compiler. On many occasions, when differences in hardware or the
way the operating system is intended to be used require changes in the configuration of MINIX 3,



editing this file and recompiling the system is all that must be done. We suggest that if you
modify this file you should also modify the comment on line 2303 to help identify the purpose of
the modifications.

The user-settable parameters are all in the first part of the file, but some of these parameters are
not intended to be edited here. On line 2326 another header file, minix/sys_config.h is included,
and definitions of some parameters are inherited from this file. The programmers thought this
was a good idea because a few files in the system need the basic definitions in sys_config.h
without the rest of those in config.h. In fact, there are many names in config.h which do not begin
with an underscore that are likely to conflict with names in common usage, such as CHIP or INTEL
that would be likely to be found in software ported to MINIX 3 from another operating system. All
of the names in sys_config.h begin with underscores, and conflicts are less likely.

MACHINE is actually configured as _ MACHINE_IBM_PC in sys_config.h; lines 2330 to 2334 lists
short alternatives for all possible values for MACHINE. Earlier versions of MINIX were ported to
Sun, Atari, and Maclntosh platforms, and the full source code contains alternatives for alternative
hardware. Most of the MINIX 3 source code is independent of the type of machine, but an
operating system always has some system-dependent code. Also, it should be noted that,
because MINIX 3 is so new, as of this writing additional work is needed to complete porting MINIX
3 to non-Intel platforms.

Other definitions in config.h allow customization for other needs in a particular installation. For
instance, the number of buffers used by the file system for the disk cache should generally be as
large as possible, but a large number of buffers requires lots of memory. Caching 128 blocks, as
configured on line 2345, is considered minimal and satisfactory only for a MINIX 3 installation on
a system with less than 16 MB of RAM; for systems with ample memory a much larger number
can be put here. If it is desired to use a modem or log in over a network connection the
NR_RS_LINES and NR_PTYS definitions (lines 2379 and 2380) should be increased and the
system recompiled. The last part of config.h contains definitions that are necessary, but which
should not be changed. Many definitions here just define alternate names for constants defined in
sys_config.h.
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Sys_config.h (line 2500) contains definitions that are likely to be needed by a system
programmer, for instance someone writing a new device driver. You are not likely to need to
change very much in this file, with the possible exception of _NR_PROCS (line 2522). This controls
the size of the process table. If you want to use a MINIX 3 system as a network server with many
remote users or many server processes running simultaneously, you might need to increase this
constant.

The next file is const.h (line 2600), which illustrates another common use of header files. Here we
find a variety of constant definitions that are not likely to be changed when compiling a new
kernel but that are used in a number of places. Defining them here helps to prevent errors that
could be hard to track down if inconsistent definitions were made in multiple places. Other files
named const.h can be found elsewhere in the MINIX 3 source tree, but they are for more limited
use. Similarly, definitions that are used only in the kernel are included in src/kernel/const.h.
Definitions that are used only in the file system are included in src/servers/fs/const.h. The
process manager uses src/servers/pm/const.h for its local definitions. Only those definitions that
are used in more than one part of the MINIX 3 system are included in include/minix/const.h.

A few of the definitions in const.h are noteworthy. EXTERN is defined as a macro expanding into
extern (line 2608). Global variables that are declared in header files and included in two or more
files are declared EXTERN, as in

EXTERN i nt who;



If the variable were declared just as

i nt who;

and included in two or more files, some linkers would complain about a multiply defined variable.
Furthermore, the C reference manual explicitly forbids this construction (Kernighan and Ritchie,
1988).

To avoid this problem, it is necessary to have the declaration read

extern int who;

in all places but one. Using EXTERN prevents this problem by having it expand into extern
everywhere that const.h is included, except following an explicit redefinition of EXTERN as the null
string. This is done in each part of MINIX 3 by putting global definitions in a special file called
glo.h, for instance, src/kernel/glo.h, which is indirectly included in every compilation. Within each
glo.h there is a sequence
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#i f def _TABLE
#undef EXTERN
#defi ne EXTERN
#endi f

and in the table.c files of each part of MINIX 3 there is a line

#def i ne_TABLE

preceding the #i ncl ude section. Thus when the header files are included and expanded as part of
the compilation of table.c, extern is not inserted anywhere (because EXTERN is defined as the null
string within table.c) and storage for the global variables is reserved only in one place, in the
object file table.o.

If you are new to C programming and do not quite understand what is going on here, fear not;
the details are really not important. This is a polite way of rephrasing Ken Thompson's famous
comment cited earlier. Multiple inclusion of header files can cause problems for some linkers
because it can lead to multiple declarations for included variables. The EXTERN business is simply
a way to make MINIX 3 more portable so it can be linked on machines whose linkers do not
accept multiply defined variables.

PRIVATE is defined as a synonym for static. Procedures and data that are not referenced outside
the file in which they are declared are always declared as PRIVATE to prevent their names from
being visible outside the file in which they are declared. As a general rule, all variables and
procedures should be declared with a local scope, if possible. PUBLIC is defined as the null string.
An example from kernel/proc.c may help make this clear. The declaration

PUBLI C voi d | ock_dequeue(rp)



comes out of the C preprocessor as

voi d | ock_dequeue(rp)

which, according to the C language scope rules, means that the function name lock_dequeue is
exported from the file and the function can be called from anywhere in any file linked into the
same binary, in this case, anywhere in the kernel. Another function declared in the same file is

PRI VATE voi d dequeue(rp)

which is preprocessed to become

static void dequeue(rp)

This function can only be called from code in the same source file. PRIVATE and PUBLIC are not
necessary in any sense but are attempts to undo the damage caused by the C scope rules (the
default is that names are exported outside the file; it should be just the reverse).
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The rest of const.h defines numerical constants used throughout the system. A section of const.h
is devoted to machine or configuration-dependent definitions. For instance, throughout the source
code the basic unit of memory allocation is the click. Different values for the click size may be
chosen for different processor architectures. For Intel platforms it is 1024 bytes. Alternatives for
Intel, Motorola 68000, and Sun SPARC architectures are defined on lines 2673 to 2681. This file
also contains the macros MAX and MIN, so we can say

z = MAX(X, VY);

to assign the larger of x and y to z.

Type.h (line 2800) is another file that is included in every compilation by means of the master
headers. It contains a number of key type definitions, along with related numerical values.

The first two structs define two different types of memory map, one for local memory regions
(within the data space of a process) and one for remote memory areas, such as a RAM disk (lines
2828 to 2840). This is a good place to mention the concepts used in referring to memory. As we
just mentioned, the click is the basic unit of measurement of memory; in MINIX 3 for Intel
processors a click is 1024 bytes. Memory is measured as phys_ clicks, which can be used by the
kernel to access any memory element anywhere in the system, or as vir_clicks, used by
processes other than the kernel. A vir_clicks memory reference is always with respect to the base
of a segment of memory assigned to a particular process, and the kernel often has to make
translations between virtual (i.e. process-based) and physical (RAM-based) addresses. The
inconvenience of this is offset by the fact that a process can do all its own memory references in
vir_clicks.

One might suppose that the same unit could be used to specify the size of either type of memory,
but there is an advantage to using vir_clicks to specify the size of a unit of memory allocated to a
process, since when this unit is used a check is done to be sure that no memory is accessed
outside of what has been specifically assigned to the current process. This is a major feature of
the protected mode of modern Intel processors, such as the Pentium family. Its absence in the
early 8086 and 8088 processors caused some headaches in the design of earlier versions of



MINIX.

Another important structure defined here is sigmsg (lines 2866 to 2872). When a signal is caught
the kernel has to arrange that the next time the signaled process gets to run it will run the signal
handler, rather than continuing execution where it was interrupted. The process manager does
most of the work of managing signals; it passes a structure like this to the kernel when a signal is
caught.

The kinfo structure (lines 2875 to 2893) is used to convey information about the kernel to other
parts of the system. The process manager uses this information when it sets up its part of the
process table.
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Data structures and function prototypes for interprocess communication are defined in ipc.h
(line 3000). The most important definition in this file is message on lines 3020 to 3032. While we
could have defined message to be an array of some number of bytes, it is better programming
practice to have it be a structure containing a union of the various message types that are
possible. Seven message formats, mess_1 through mess_8, are defined (type mess_6 is
obsolete). A message is a structure containing a field m_source, telling who sent the message, a
field m_type, telling what the message type is (e.g., SYS_EXEC to the system task) and the data
fields.

The seven message types are shown in Fig. 2-34. In the figure four message types, the first two
and the last two, seem identical. Just in terms of size of the data elements they are identical, but
many of the data types are different. It happens that on an Intel CPU with a 32-bit word size the
int, long, and pointer data types are all 32-bit types, but this would not necessarily be the case on
another kind of hardware. Defining seven distinct formats makes it easier to recompile MINIX 3
for a different architecture.

Figure 2-34. The seven message types used in MINIX 3. The sizes of

message elements will vary, depending upon the architecture of the

machine; this diagram illustrates sizes on CPUs with 32-bit pointers,
such as those of Pentium family members.

(This item is displayed on page 143 in the print version)

[View full size image]
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When it is necessary to send a message containing, say, three integers and three pointers (or
three integers and two pointers), then the first format in Fig. 2-34 is the one to use. The same
applies to the other formats. How does one assign a value to the first integer in the first format?
Suppose that the message is called x. Then x.m_u refers to the union portion of the message
struct. To refer to the first of the six alternatives in the union, we use x.m_u.m_m1. Finally, to
get at the first integer in this struct we say x.m_u.m_m1.m1lil. This is quite a mouthful, so
somewhat shorter field names are defined as macros after the definition of message itself. Thus
X.m1_il can be used instead of x.m_u.m_ml1.m1lil. The short names all have the form of the
letter m, the format number, an underscore, one or two letters indicating whether the field is an
integer, pointer, long, character, character array, or function, and a sequence number to
distinguish multiple instances of the same type within a message.

While discussing message formats, this is a good place to note that an operating-system and its
compiler often have an "understanding" about things like the layout of structures, and this can
make the implementer's life easier. In MINIX 3, the int fields in messages are sometimes used to
hold unsigned data types. In some cases this could cause overflow, but the code was written
using the knowledge that the MINIX 3 compiler copies unsigned types to ints and vice versa
without changing the data or generating code to detect overflow. A more compulsive approach
would be to replace each int field with a union of an int and an unsigned. The same applies to the
long fields in the messages; some of them may be used to pass unsigned long data. Are we
cheating here? Perhaps a little bit, one might say, but if you wish to port MINIX 3 to a new
platform, quite clearly the exact format of the messages is something to which you must pay a
great deal of attention, and now you have been alerted that the behavior of the compiler is
another factor that needs attention.
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Also defined in ipc.h are prototypes for the message passing primitives described earlier (lines



3095 to 3101). In addition to the important send, r ecei ve, sendr ec, and noti fy primitives, several
others are defined. None of these are much used; in fact one could say that they are relicts of
earlier stages of development of MINIX 3. Old computer programs make good archaeological digs.
They might disappear in a future release. Nevertheless, if we do not explain them now some
readers undoubtedly will worry about them. The nonblocking nb_send and nb_r ecei ve calls have
mostly been replaced by not i fy, which was implemented later and considered a better solution to
the problem of sending or checking for a message without blocking. The prototype for echo has no
source or destination field. This primitive serves no useful purpose in production code, but was
useful during development to test the time it took to send and receive a message.
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One other file in include/minix/, syslib.h (line 3200), is almost universally used by means of
inclusion in the master headers of all of the user-space components of MINIX 3. This file not
included in the kernel's master header file, src/kernel/kernel.h, because the kernel does not need
library functions to access itself. Syslib.h contains prototypes for C library functions called from
within the operating system to access other operating system services.

We do not describe details of C libraries in this text, but many library functions are standard and
will be available for any C compiler. However, the C functions referenced by syslib.h are of course
quite specific to MINIX 3 and a port of MINIX 3 to a new system with a different compiler requires
porting these library functions. Fortunately this is not difficult, since most of these functions
simply extract the parameters of the function call and insert them into a message structure, then
send the message and extract the results from the reply message. Many of these library functions
are defined in a dozen or fewer lines of C code.

Noteworthy in this file are four macros for accessing 1/0 ports for input or output using byte or
word data types and the prototype of the sys_sdevio function to which all four macros refer (lines
3241 to 3250). Providing a way for device drivers to request reading and writing of 1/0 ports by
the kernel is an essential part of the MINIX 3 project to move all such drivers to user space.

A few functions which could have been defined in syslib.h are in a separate file, sysutil.h (line
3400), because their object code is compiled into a separate library. Two functions prototyped
here need a little more explanation. The first is printf (line 3442). If you have experience
programming in C you will recognize that printf is a standard library function, referenced in almost
all programs.

This is not the printf function you think it is, however. The version of printf in the standard library
cannot be used within system components. Among other things, the standard printf is intended to
write to standard output, and must be able to format floating point numbers. Using standard
output would require going through the file system, but for printing messages when there is a
problem and a system component needs to display an error message, it is desirable to be able to
do this without the assistance of any other system components. Also, support for the full range of
format specifications usable with the standard printf would bloat the code for no useful purpose.
So a simplified version of printf that does only what is needed by operating system components is
compiled into the system utilities library. This is found by the compiler in a place that will depend
upon the platform; for 32-bit Intel systems it is /usr/lib/i386/libsysutil.a. When the file system,
the process manager, or another part of the operating system is linked to library functions this
version is found before the standard library is searched.

On the next line is a prototype for kputc. This is called by the system version of printf to do the
work of displaying characters on the console. However, more tricky business is involved here.
Kputc is defined in several places. There is a copy in the system utilities library, which will be the
one used by default. But several parts of the system define their own versions. We will see one
when we study the console interface in the next chapter. The log driver (which is not described in
detail here) also defines its own version. There is even a definition of kputc in the kernel itself, but



this is a special case. The kernel does not use printf. A special printing function, kprintf, is defined
as part of the kernel and is used when the kernel needs to print.
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When a process needs to execute a MINIX 3 system call, it sends a message to the process
manager (PM for short) or the file system (FS for short). Each message contains the number of
the system call desired. These numbers are defined in the next file, callnr.h (line 3500). Some
numbers are not used, these are reserved for calls not yet implemented or represent calls
implemented in other versions which are now handled by library functions. Near the end of the file
some call numbers are defined that do not correspond to calls shown in Fig 1-9. Svrct|
(mentioned earlier), ksi g, unpause, revi ve, and t ask_r epl y are used only within the operating
system itself. The system call mechanism is a convenient way to implement these. In fact,
because they will not be used by external programs, these "system calls,” may be modified in new
versions of MINIX 3 without fear of breaking user programs.

The next file is com.h (line 3600). One interpretation of the file name is that is stands for
common, another is that it stands for communication. This file provides common definitions used
for communication between servers and device drivers. On lines 3623 to 3626 task numbers are
defined. To distinguish them from process numbers, task numbers are negative. On lines 3633 to
3640 process numbers are defined for the processes that are loaded in the boot image. Note
these are slot numbers in the process table; they should not be confused with process id (PID)
numbers.

The next section of com.h defines how messages are constructed to carry out a noti fy operation.
The process numbers are used in generating the value that is passed in the m_type field of the
message. The message types for notifications and other messages defined in this file are built by
combining a base value that signifies a type category with a small number that indicates the
specific type. The rest of this file is a compendium of macros that translate meaningful identifiers
into the cryptic numbers that identify message types and field names.

A few other files in include/minix/ are listed in Appendix B. Devio.h (line 4100) defines types and
constants that support user-space access to 1/0 ports, as well as some macros that make it
easier to write code that specifies ports and values. Dmap.h (line 4200) defines a struct and an
array of that struct, both named dmap. This table is used to relate major device numbers to the
functions that support them. Major and minor device numbers for the memory device driver and
major device numbers for other important device drivers are also defined.

Include/minix/ contains several additional specialized headers that are not listed in Appendix B,
but which must be present to compile the system. One is u64.h which provides support for 64-bit
integer arithmetic operations, necessary to manipulate disk addresses on high capacity disk
drives. These were not even dreamed of when UNIX, the C language, Pentium-class processors,
and MINIX were first conceived. A future version of MINIX 3 may be written in a language that
has built-in support for 64-bit integers on CPUs with 64-bit registers; until then, the definitions in
u64.h provide a work-around.
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Three files remain to be mentioned. Keymap.h defines the structures used to implement
specialized keyboard layouts for the character sets needed for different languages. It is also
needed by programs which generate and load these tables. Bitmap.h provides a few macros to
make operations like setting, resetting, and testing bits easier. Finally, partition.h defines the
information needed by MINIX 3 to define a disk partition, either by its absolute byte offset and
size on the disk, or by a cylinder, head, sector address. The u64_t type is used for the offset and
size, to allow use of large disks. This file does not describe the layout of a partition table on a



disk, the file that does that is in the next directory.

The last specialized header directory we will consider, include/ibm/, contains several files which
provide definitions related to the IBM PC family of computers. Since the C language knows only
memory addresses, and has no provision for accessing 1/0 port addresses, the library contains
routines written in assembly language to read and write from ports. The various routines available
are declared in ibm/portio.h (line 4300). All possible input and output routines for byte, integer,
and long data types, singly or as strings, are available, from inb (input one byte) to outsl (output
a string of longs). Low-level routines in the kernel may also need to disable or reenable CPU
interrupts, which are also actions that C cannot handle. The library provides assembly code to do
this, and intr_disable and intr_enable are declared on lines 4325 and 4326.

The next file in this directory is interrupt.h (line 4400), which defines port address and memory
locations used by the interrupt controller chip and the BIOS of PC-compatible systems. Finally,
more 1/0 ports are defined in ports.h (line 4500). This file provides addresses needed to access
the keyboard interface and the timer chip used by the clock chip.

Several additional files in include/ibm/ with IBM-specific data are not listed in Appendix B, but are
essential and should be mentioned. Bios.h, memory.h, and partition.h are copiously commented
and are worth reading if you would like to know more about memory use or disk partition tables.
Cmos.h, cpu.h, and int86.h provide additional information on ports, CPU flag bits, and calling
BIOS and DOS services in 16-bit mode. Finally, diskparm.h defines a data structure needed for
formatting a floppy disk.

2.6.5. Process Data Structures and Header Files

Now let us dive in and see what the code in src/kernel/ looks like. In the previous two sections we
structured our discussion around an excerpt from a typical master header; we will look first at the
real master header for the kernel, kernel.h (line 4600). It begins by defining three macros. The
first, POSIX_SOURCE, is a feature test macro defined by the POSIX standard itself. All such
macros are required to begin with the underscore character, " _". The effect of defining the
_POSIX_SOURCE macro is to ensure that all symbols required by the standard and any that are
explicitly permitted, but not required, will be visible, while hiding any additional symbols that are
unofficial extensions to POSIX. We have already mentioned the next two definitions: the _MINIX
macro overrides the effect of _POSIX_SOURCE for extensions defined by MINIX 3, and _SYSTEM
can be tested wherever it is important to do something differently when compiling system code,
as opposed to user code, such as changing the sign of error codes. Kernel.h then includes other
header files from include/ and its subdirectories include/sys/ include/minix/, and include/ibm/
including all those referred to in Fig. 2-32. We have discussed all of these files in the previous two
sections. Finally, six additional headers from the local directory, src/kernel/, are included, their
names included in quote characters.
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Kernel.h makes it possible to guarantee that all source files share a large number of important
definitions by writing the single line

#i ncl ude "kernel . h"

in each of the other kernel source files. Since the order of inclusion of header files is sometimes
important, kernel.h also ensures that this ordering is done correctly, once and forever. This
carries to a higher level the "get it right once, then forget the details" technique embodied in the
header file concept. Similar master headers are provided in source directories for other system



components, such as the file system and the process manager.

Now let us proceed to look at the local header files included in kernel.h. First we have yet another
file named config.h, which, analogous to the system-wide file include/minix/config.h, must be
included before any of the other local include files. Just as we have files const.h and type.h in the
common header directory include/minix/, we also have files const.h. and type.h in the kernel
source directory, src/kernel/. The files in include/minix/ are placed there because they are needed
by many parts of the system, including programs that run under the control of the system. The
files in src/kernel/ provide definitions needed only for compilation of the kernel. The FS, PM, and
other system source directories also contain const.h and type.h files to define constants and types
needed only for those parts of the system. Two of the other files included in the master header,
proto.h glo.h, have no counterparts in the main include/ directories, but we will find that they,
too, have counterparts used in compiling the file system and the process manager. The last local
header included in kernel.h is another ipc.h.

Since this is the first time it has come up in our discussion, note at the beginning of
kernel/config.h there is a #i f ndef ... #defi ne sequence to prevent trouble if the file is included
multiple times. We have seen the general idea before. But note here that the macro defined here
is CONFIG_H without an underscore. Thus it is distinct from the macro _CONFIG_H defined in
include/minix/config.h.
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The kernel's version of config.h gathers in one place a number of definitions that are unlikely to
need changes if your interest in MINIX 3 is studying how an operating system works, or using this
operating system in a conventional general-purpose computer. However, suppose you want to
make a really tiny version of MINIX 3 for controlling a scientific instrument or a home-made
cellular telephone. The definitions on lines 4717 to 4743 allow selective disabling of kernel calls.
Eliminating unneeded functionality also reduces memory requirements because the code needed
to handle each kernel call is conditionally compiled using the definitions on lines 4717 to 4743. If
some function is disabled, the code needed to execute it is omitted from the system binary. For
example, a cellular telephone might not need to fork off new processes, so the code for doing so
could be omitted from the executable file, resulting in a smaller memory footprint. Most other
constants defined in this file control basic parameters. For instance, while handling interrupts a
special stack of size K_STACK_BYTES is used. This value is set on line 4772. The space for this
stack is reserved within mpx386.s, an assembly language file.

In const.h (line 4800) a macro for converting virtual addresses relative to the base of the kernel's
memory space to physical addresses is defined on line 4814. A C function, umap_local, is defined
elsewhere in the kernel code so the kernel can do this conversion on behalf of other components
of the system, but for use within the kernel the macro is more efficient. Several other useful
macros are defined here, including several for manipulating bitmaps. An important security
mechanism built into the Intel hardware is activated by two macro definition lines here. The
processor status word (PSW) is a CPU register, and 1/0 Protection Level (10PL) bits within
it define whether access to the interrupt system and 1/0 ports is allowed or denied. On lines 4850
and 4851 different PSW values are defined that determine this access for ordinary and privileged
processes. These values are put on the stack as part of putting a new process in execution.

In the next file we will consider, type.h (line 4900), the memory structure (lines 4925 to 4928)
uses two quantities, base address and size, to uniquely specify an area of memory.

Type.h defines several other prototypes and structures used in any implementation of MINIX 3.
For instance, two structures, kmessages, used for diagnostic messages from the kernel, and
randomness, used by the random number generator, are defined. Type.h also contains several
machine-dependent type definitions. To make the code shorter and more readable we have
removed conditional code and definitions for other CPU types. But you should recognize that



definitions like the stackframe_s structure (lines 4955 to 4974), which defines how machine
registers are saved on the stack, is specific to Intel 32-bit processors. For another platform the
stackframe_s structure would be defined in terms of the register structure of the CPU to be used.
Another example is the segdesc_s structure (lines 4976 to 4983), which is part of the protection
mechanism that keeps processes from accessing memory regions outside those assigned to them.
For another CPU the segdesc_s structure might not exist at all, depending upon the mechanism
used to implement memory protection.
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Another point to make about structures like these is that making sure all the required data is
present is necessary, but possibly not sufficient for optimal performance. The stackframe_s must
be manipulated by assembly language code. Defining it in a form that can be efficiently read or
written by assembly language code reduces the time required for a context switch.

The next file, proto.h (line 5100), provides prototypes of all functions that must be known outside
of the file in which they are defined. All are written using the _PROTOTYPE macro discussed in the
previous section, and thus the MINIX 3 kernel can be compiled either with a classic C (Kernighan
and Ritchie) compiler, such as the original MINIX 3 C compiler, or a modern ANSI Standard C
compiler, such as the one which is part of the MINIX 3 distribution. A number of these prototypes
are system-dependent, including interrupt and exception handlers and functions that are written
in assembly language.

In glo.h (line 5300) we find the kernel's global variables. The purpose of the macro EXTERN was
described in the discussion of include/minix/const.h. It normally expands into extern. Note that
many definitions in glo.h are preceded by this macro. The symbol EXTERN is forced to be
undefined when this file is included in table.c, where the macro _TABLE is defined. Thus the actual
storage space for the variables defined this way is reserved when glo.h is included in the
compilation of table.c. Including glo.h in other C source files makes the variables in table.c known
to the other modules in the kernel.

Some of the kernel information structures here are used at startup. Aout (line 5321) will hold the
address of an array of the headers of all of the MINIX 3 system image components. Note that
these are physical addresses, that is, addresses relative to the entire address space of the
processor. As we will see later, the physical address of aout will be passed from the boot monitor
to the kernel when MINIX 3 starts up, so the startup routines of the kernel can get the addresses
of all MINIX 3 components from the monitor's memory space. Kinfo (line 5322) is also an
important piece of information. Recall that the structure was defined in include/minix/type.h. Just
as the boot monitor uses aout to pass information about all processes in the boot image to the
kernel, the kernel fills in the fields of kinfo with information about itself that other components of
the system may need to know about.

The next section of glo.h contains variables related to control of process and kernel execution.
Prev_ptr, proc_ptr, and next_ptr point to the process table entries of the previous, current, and
next processes to run. Bill_ptr also points to a process table entry; it shows which process is
currently being billed for clock ticks used. When a user process calls the file system, and the file
system is running, proc_ptr points to the file system process. However, bill_ptr will point to the
user making the call, since CPU time used by the file system is charged as system time to the
caller. We have not actually heard of a MINIX system whose owner charges others for their use of
CPU time, but it could be done. The next variable, k_reenter, is used to count nested executions
of kernel code, such as when an interrupt occurs when the kernel itself, rather than a user
process, is running. This is important, because switching context from a user process to the
kernel or vice versa is different (and more costly) than reentering the kernel. When an interrupt
service complete it is important for it to determine whether control should remain with the kernel
or if a user-space process should be restarted. This variable is also tested by some functions
which disable and reenable interrupts, such as lock enqueue. If such a function is executed when



interrupts are disabled already, the interrupts should not be reenabled when reenabling is not
wanted. Finally, in this section there is a counter for lost clock ticks. How a clock tick can be lost
and what is done about it will be discussed when we discuss the clock task.
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The last few variables defined in glo.h, are declared here because they must be known throughout
the kernel code, but they are declared as extern rather than as EXTERN because they are
initialized variables, a feature of the C language. The use of the EXTERN macro is not
compatible with C-style initialization, since a variable can only be initialized once.

Tasks that run in kernel space, currently just the clock task and the system task, have their own
stacks within t_stack. During interrupt handling, the kernel uses a separate stack, but it is not
declared here, since it is only accessed by the assembly language level routine that handles
interrupt processing, and does not need to be known globally. The last file included in kernel.h,
and thus used in every compilation, is ipc.h (line 5400). It defines various constants used in
interprocess communication. We will discuss these later when we get to the file where they are
used, kernel/proc.c.

Several more kernel header files are widely used, although not so much that they are included in
kernel.h. The first of these is proc.h (line 5500), which defines the kernel's process table. The
complete state of a process is defined by the process' data in memory, plus the information in its
process table slot. The contents of the CPU registers are stored here when a process is not
executing and then are restored when execution resumes. This is what makes possible the illusion
that multiple processes are executing simultaneously and interacting, although at any instant a
single CPU can be executing instructions of only one process. The time spent by the kernel saving
and restoring the process state during each context switch is necessary, but obviously this is
time during which the work of the processes themselves is suspended. For this reason these
structures are designed for efficiency. As noted in the comment at the beginning of proc.h, many
routines written in assembly language also access these structures, and another header, sconst.h,
defines offsets to fields in the process table for use by the assembly code. Thus changing a
definition in proc.h may necessitate a change in sconst.h.

Before going further we should mention that, because of MINIX 3's microkernel structure, the
process table we will discuss is here is paralleled by tables in PM and FS which contain per-process
entries relevant to the function of these parts of MINIX 3. Together, all three of these tables are
equivalent to the process table of an operating system with a monolithic structure, but for the
moment when we speak of the process table we will be talking about only the kernel's process
table. The others will be discussed in later chapters.
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Each slot in the process table is defined as a struct proc (lines 5516 to 5545). Each entry contains
storage for the process' registers, stack pointer, state, memory map, stack limit, process id,
accounting, alarm time, and message info. The first part of each process table entry is a
stackframe_s structure. A process that is already in memory is put into execution by loading its
stack pointer with the address of its process table entry and popping all the CPU registers from
this struct.

There is more to the state of a process than just the CPU registers and the data in memory,
however. In MINIX 3, each process has a pointer to a priv structure in its process table slot (line
5522). This structure defines allowed sources and destinations of messages for the process and
many other privileges. We will look at details later. For the moment, note that each system
process has a pointer to a unique copy of this structure, but user privileges are all equalthe
pointers of all user processes point to the same copy of the structure. There is also a byte-sized



field for a set of bit flags, p_rts_flags (line 5523). The meanings of the bits will be described
below. Setting any bit to 1 means a process is not runnable, so a zero in this field indicates a
process is ready.

Each slot in the process table provides space for information that may be needed by the kernel.
For instance, the p_max_priority field (line 5526), tells which scheduling queue the process should
be queued on when it is ready to run for the first time. Because the priority of a process may be
reduced if it prevents other processes from running, there is also a p_priority field which is initially
set equal to p_max_priority. P_priority is the field that actually determines the queue used each
time the process is ready.

The time used by each process is recorded in the two clock_t variables at lines 5532 and 5533.
This information must be accessed by the kernel and it would be inefficient to store this in a
process' own memory space, although logically that could be done. P_nextready (line 5535), is
used to link processes together on the scheduler queues.

The next few fields hold information related to messages between processes. When a process
cannot complete a send because the destination is not waiting, the sender is put onto a queue
pointed to by the destination's p_caller_q pointer (line 5536). That way, when the destination
finally does a recei ve, it is easy to find all the processes wanting to send to it. The p_q_link field
(line 5537) is used to link the members of the queue together.

The rendezvous method of passing messages is made possible by the storage space reserved at
lines 5538 to 5540. When a process does a recei ve and there is no message waiting for it, it
blocks and the number of the process it wants to recei ve from is stored in p_getfrom. Similarly,
p_sendto holds the process number of the destination when a process does a send and the
recipient is not waiting. The address of the message buffer is stored in p_messbuf. The
penultimate field in each process table slot is p_pending (line 5542), a bitmap used to keep track
of signals that have not yet been passed to the process manager (because the process manager
is not waiting for a message).
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Finally, the last field in a process table entry is a character array, p_name, for holding the name
of the process. This field is not needed for process management by the kernel. MINIX 3 provides
various debug dumps triggered by pressing a special key on the console keyboard. Some of
these allow viewing information about all processes, with the name of each process printed along
with other data. Having a meaningful name associated with each process makes understanding
and debugging kernel operation easier.

Following the definition of a process table slot come definitions of various constants used in its
elements. The various flag bits that can be set in p_rts_flags are defined and described on lines
5548 to 5555. If the slot is not in use, SLOT_FREE is set. After a f ork, NO_MAP is set to prevent
the child process from running until its memory map has been set up. SENDING and RECEIVING
indicate that the process is blocked trying to send or receive a message. SIGNALED and
SIG_PENDING indicate that signals have been received, and P_STOP provides support for tracing.
NO_PRIV is used to temporarily prevent a new system process from executing until its setup is
complete.

The number of scheduling queues and allowable values for the p_priority field are defined next
(lines 5562 to 5567). In the current version of this file user processes are allowed to be given
access to the highest priority queue; this is probably a carry-over from the early days of testing
drivers in user space and MAX_USER_Q should probably adjusted to a lower priority (larger
number).

Next come several macros that allow addresses of important parts of the process-table to be



defined as constants at compilation time, to provide faster access at run time, and then more
macros for run time calculations and tests. The macro proc_addr (line 5577) is provided because
it is not possible to have negative subscripts in C. Logically, the array proc should go from
NR_TASKS to +NR_PROCS. Unfortunately, in C it must start at O, so proc [O] refers to the most
negative task, and so forth. To make it easier to keep track of which slot goes with which process,
we can write

rp = proc_addr(n);

to assign to rp the address of the process slot for process n, either positive or negative.

The process table itself is defined here as an array of proc structures, proc[NR_TASKS +
NR_PROCS] (line 5593). Note that NR_TASKS is defined in include/minix/com.h (line 3630) and
the constant NR_PROCS is defined in include/minix/config.h (line 2522). Together these set the
size of the kernel's process table. NR_PROCS can be changed to create a system capable of
handling a larger number of processes, if that is necessary (e.g., on a large server).
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Finally, several macros are defined to speed access. The process table is accessed frequently, and
calculating an address in an array requires slow multiplication operations, so an array of pointers
to the process table elements, pproc_addr (line 5594), is provided. The two arrays rdy_head and
rdy_tail are used to maintain the scheduling queues. For example, the first process on the default
user queue is pointed to by rdy_head[USER_Q].

As we mentioned at the beginning of the discussion of proc.h there is another file sconst.h (line
5600), which must be synchronized with proc.h if there are changes in the structure of the
process table. Sconst.h defines constants used by assembler code, expressed in a form usable by
the assembler. All of these are offsets into the stackframe_s structure portion of a process table
entry. Since assembler code is not processed by the C compiler, it is simpler to have such
definitions in a separate file. Also, since these definitions are all machine dependent, isolating
them here simplifies the process of porting MINIX 3 to another processor which will need a
different version of sconst.h. Note that many offsets are expressed as the previous value plus W,
which is set equal to the word size at line 5601. This allows the same file to serve for compiling a
16-bit or 32-bit version of MINIX 3.

Duplicate definitions create a potential problem. Header files are supposed to allow one to provide
a single correct set of definitions and then proceed to use them in many places without devoting a
lot of further attention to the details. Obviously, duplicate definitions, like those in proc.h and
sconst.h, violate that principle. This is a special case, of course, but as such, special attention is
required if changes are made to either of these files to ensure the two files remain consistent.

The system privileges structure, priv, that was mentioned briefly in the discussion of the process
table is fully defined in priv.h, on lines 5718 to 5735. First there is a set of flag bits, s_flags, and
then come the s_trap_mask, s_ipc_from, s_ipc_to, and s_call_mask fields which define which
system calls may be initiated, which processes messages may be received from or sent to, and
which kernel calls are allowed.

The priv structure is not part of the process table, rather each process table slot has a pointer to
an instance of it. Only system processes have private copies; user processes all point to the same
copy. Thus, for a user process the remaining fields of the structure are not relevant, as sharing
them does not make sense. These fields are bitmaps of pending notifications, hardware
interrupts, and signals, and a timer. It makes sense to provide these here for system processes,
however. User processes have notifications, signals, and timers managed on their behalf by the
process manager.



The organization of priv.h is similar to that of proc.h. After the definition of the priv structure
come macros definitions for the flag bits, some important addresses known at compile time, and
some macros for address calculations at run time. Then the table of priv structures,
priv[NR_SYS_ PROCS], is defined, followed by an array of pointers, ppriv_addr[NR_SYS_PROCS]
(lines 5762 and 5763). The pointer array provides fast access, analogous to the array of pointers
that provides fast access to process table slots. The value of STACK_GUARD defined on line 5738
is a pattern that is easily recognizable. Its use will be seen later; the reader is invited to search
the Internet to learn about the history of this value.
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The last item in priv.h is a test to make sure that NR_SYS PROCS has been defined to be larger
than the number of processes in the boot image. The #error line will print a message if the test
condition tests true. Although behavior may be different with other C compilers, with the standard
MINIX 3 compiler this will also abort the compilation.

The F4 key triggers a debug dump that shows some of the information in the privilege table.
Figure 2-35 shows a few lines of this table for some representative processes. The flags entries
mean P: preemptable, B: billable, S: system. The traps mean E: echo, S: send, R: receive, B:
both, N: notification. The bitmap has a bit for each of the NR_SYS_PROCS (32) system processes
allowed, the order corresponds to the id field. (In the figure only 16 bits are shown, to make it fit
the page better.) All user processes share id 0, which is the left-most bit position. The bitmap
shows that user processes such as init can send messages only to the process manager, file
system, and reincarnation server, and must use sendr ec. The servers and drivers shown in the
figure can use any of the ipc primitives and all but memory can send to any other process.

Figure 2-35. Part of a debug dump of the privilege table. The clock
task, file server, tty, and init processes privileges are typical of tasks,
servers, device drivers, and user processes, respectively. The bitmap is
truncated to 16 bits.

--nr- -id- - hame- -fl ags- -traps- -ipc_to mask ------
(-4) (01) | DLE P-BS- ----- 00000000 00001111
[-3] (02) CLOCK ---S --R- 00000000 00001111
[-2] (03) SYSTEM ---S --R- 00000000 00001111
[-1] (04) KERNEL ---S e 00000000 00001111

0 (05) pm P--S- ESRBN 11111111 11111111
1 (06) fs P--S- ESRBN 11111111 11111111
2 (07) rs P--S- ESRBN 11111111 11111111
3 (09) nenory P--S- ESRBN 00110111 01101111
4  (10) | og pP--S ESRBN 11111111 11111111
5 (08) tty pP--S ESRBN 11111111 11111111
6 (11) driver P--S- ESRBN 11111111 11111111
7 (00) init P- B- - E- - B- 00000111 00000000

Another header that is included in a number of different source files is protect.h (line 5800).
Almost everything in this file deals with architecture details of the Intel processors that support
protected mode (the 80286, 80386, 80486, and the Pentium series). A detailed description of
these chips is beyond the scope of this book. Suffice it to say that they contain internal registers
that point to descriptor tables in memory. Descriptor tables define how system resources are



used and prevent processes from accessing memory assigned to other processes.
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The architecture of 32-bit Intel processors also provides for four privilege levels, of which MINIX
3 takes advantage of three. These are defined symbolically on lines 5843 to 5845. The most
central parts of the kernel, the parts that run during interrupts and that manage context
switches, always run with INTR_PRIVILEGE. Every address in the memory and every register in
the CPU can be accessed by a process with this privilege level. The tasks run at TASK_PRIVILEGE
level, which allows them to access 1/0 but not to use instructions that modify special registers,
like those that point to descriptor tables. Servers and user processes run at USER_PRIVILEGE
level. Processes executing at this level are unable to execute certain instructions, for instance
those that access 1/0 ports, change memory assignments, or change privilege levels themselves.

The concept of privilege levels will be familiar to those who are familiar with the architecture of
modern CPUs, but those who have learned computer architecture through study of the assembly
language of low-end microprocessors may not have encountered such features.

One header file in kernel/ has not yet been described: system.h, and we will postpone discussing
it until later in this chapter when we describe the system task, which runs as an independent
process, although it is compiled with the kernel. For now we are through with header files and are
ready to dig into the *.c C language source files. The first of these that we will look at is table.c
(line 6000). Compilation of this produces no executable code, but the compiled object file table.o
will contain all the kernel data structures. We have already seen many of these data structures
defined, in glo.h and other headers. On line 6028 the macro _TABLE is defined, immediately
before the #i ncl ude statements. As explained earlier, this definition causes EXTERN to become
defined as the null string, and storage space to be allocated for all the data declarations preceded
by EXTERN.

In addition to the variables declared in header files there are two other places where global data
storage is allocated. Some definitions are made directly in table.c. On lines 6037 to 6041 the
stack space needed by kernel components is defined, and the total amount of stack space for
tasks is reserved as the array t_stack[TOT_STACK_SPACE] on line 6045.

The rest of table.c defines many constants related to properties of processes, such as the
combinations of flag bits, call traps, and masks that define to whom messages and notifications
can be sent that we saw in Fig. 2-35 (lines 6048 to 6071). Following this are masks to define the
kernel calls allowed for various processes. The process manager and file server are all allowed
unique combinations. The reincarnation server is allowed access to all kernel calls, not for its own
use, but because as the parent of other system processes it can only pass to its children subsets
of its own privileges. Drivers are given a common set of kernel call masks, except for the RAM
disk driver which needs unusual access to memory. (Note that the comment on line 6075 that
mentions the "system services manager"” should say "reincarnation server"the name was changed
during development and some comments still refer to the old name.)
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Finally, on lines 6095 to 6109, the image table is defined. It has been put here rather than in a
header file because the trick with EXTERN used to prevent multiple declarations does not work
with initialized variables; that is, you may not say

extern int x = 3;

anywhere. The image table provides details needed to initialize all of the processes that are



loaded from the boot image. It will be used by the system at startup. As an example of the
information contained here, consider the field labeled "gs" in the comment on line 6096. This
shows the size of the quantum assigned to each process. Ordinary user processes, as children of
init, get to run for 8 clock ticks. The CLOCK and SYSTEM tasks are allowed to run for 64 clock
ticks if necessary. They are not really expected to run that long before blocking, but unlike user-
space servers and drivers they cannot be demoted to a lower-priority queue if they prevent other
processes from getting a chance to run.

If a new process is to be added to the boot image, a new row must be provided in the image
table. An error in matching the size of image to other constants is intolerable and cannot be
permitted. At the end of table.c tests are made for errors, using a little trick. The array dummy is
declared here twice. In each declaration the size of dummy will be impossible and will trigger a
compiler error if a mistake has been made. Since dummy is declared as extern, no space is
allocated for it here (or anywhere). Since it is not referenced anywhere else in the code, this will
not bother the compiler.

Additional global storage is allocated at the end of the assembly language file mpx386.s. Although
it will require skipping ahead several pages in the listing to see this, it is appropriate to discuss
this now, since we are on the subject of global variables. On line 6822 the assembler directive
.sect .romis used to put a magic number (to identify a valid MINIX 3 kernel) at the very
beginning of the kernel's data segment. A . sect bss assembler directive and the . space
pseudoinstruction are also used here to reserve space for the kernel's stack. The . corm
pseudoinstruction labels several words at the top of the stack so they may be manipulated
directly. We will come back to mpx386.s in a few pages, after we have discussed bootstrapping
MINIX 3.

2.6.6. Bootstrapping MINIX 3

It is almost time to start looking at the executable codebut not quite. Before we do that, let us
take a few moments to understand how MINIX 3 is loaded into memory. It is, of course, loaded
from a disk, but the process is not completely trivial and the exact sequence of events depends
on the kind of disk. In particular, it depends on whether the disk is partitioned or not. Figure 2-36
shows how diskettes and partitioned disks are laid out.
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Figure 2-36. Disk structures used for bootstrapping. (a) Unpartitioned
disk. The first sector is the bootblock. (b) Partitioned disk. The first
sector is the master boot record, also called masterboot.

[View full size image]




When the system is started, the hardware (actually, a program in ROM) reads the first sector of
the boot disk, copies it to a fixed location in memory, and executes the code found there. On an
unpartitioned MINIX 3 diskette, the first sector is a bootblock which loads the boot program, as in
Fig. 2-36(a). Hard disks are partitioned, and the program on the first sector (called masterboot
on MINIX systems) first relocates itself to a different memory region, then reads the partition
table, loaded with it from the first sector. Then it loads and executes the first sector of the active
partition, as shown in Fig. 2-36(b). (Normally one and only one partition is marked active). A
MINIX 3 partition has the same structure as an unpartitioned MINIX 3 diskette, with a bootblock
that loads the boot program. The bootblock code is the same for an unpartitioned or a partitioned
disk. Since the masterboot program relocates itself the bootblock code can be written to run at
the same memory address where masterboot is originally loaded.

The actual situation can be a little more complicated than the figure shows, because a partition
may contain subpartitions. In this case the first sector of the partition will be another master boot
record containing the partition table for the subpartitions. Eventually, however, control will be
passed to a boot sector, the first sector on a device that is not further subdivided. On a diskette
the first sector is always a boot sector. MINIX 3 does allow a form of partitioning of a diskette, but
only the first partition may be booted; there is no separate master boot record, and subpartitions
are not possible. This makes it possible for partitioned and non-partitioned diskettes to be
mounted in exactly the same way. The main use for a partitioned floppy disk is that it provides a
convenient way to divide an installation disk into a root image to be copied to a RAM disk and a
mounted portion that can be dismounted when no longer needed, in order to free the diskette
drive for continuing the installation process.
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The MINIX 3 boot sector is modified at the time it is written to the disk by a special program
called installboot which writes the boot sector and patches into it the disk address of a file named
boot on its partition or subpartition. In MINIX 3, the standard location for the boot program is in a
directory of the same name, that is, /boot/boot. But it could be anywherethe patching of the boot
sector just mentioned locates the disk sectors from which it is to be loaded. This is necessary
because previous to loading boot there is no way to use directory and file names to find a file.

Boot is the secondary loader for MINIX 3. It can do more than just load the operating system
however, as it is a monitor program that allows the user to change, set, and save various
parameters. Boot looks in the second sector of its partition to find a set of parameters to use.
MINIX 3, like standard UNIX, reserves the first 1K block of every disk device as a bootblock, but



only one 512-byte sector is loaded by the ROM boot loader or the master boot sector, so 512
bytes are available for saving settings. These control the boot operation, and are also passed to
the operating system itself. The default settings present a menu with one choice, to start MINIX
3, but the settings can be modified to present a more complex menu allowing other operating
systems to be started (by loading and executing boot sectors from other partitions), or to start
MINIX 3 with various options. The default settings can also be modified to bypass the menu and
start MINIX 3 immediately.

Boot is not a part of the operating system, but it is smart enough to use the file system data
structures to find the actual operating system image. Boot looks for a file with the name specified
in the image= boot parameter, which by default is /boot/image. If there is an ordinary file with
this name it is loaded, but if this is the name of a directory the newest file within it is loaded.
Many operating systems have a predefined file name for the boot image. But MINIX 3 users are
encouraged to modify it and to create new versions. It is useful to be able to select from multiple
versions, in order to return to an older version if an experiment is unsuccessful.

We do not have space here to go into more detail about the boot monitor. It is a sophisticated
program, almost a miniature operating system in itself. It works together with MINIX 3, and when
MINIX 3 is properly shut down, the boot monitor regains control. If you would like to know more,
the MINIX 3 Web site provides a link to a detailed description of the boot monitor source code.
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The MINIX 3 boot image (also called system image) is a concatenation of several program
files: the kernel, process manager, file system, reincarnation server, several device drivers, and
init, as shown in Fig 2-30. Note that MINIX 3 as described here is configured with just one disk
driver in the boot image, but several may be present, with the active one selected by a label. Like
all binary programs, each file in the boot image includes a header that tells how much space to
reserve for uninitialized data and stack after loading the executable code and initialized data, so
the next program can be loaded at the proper address.

The memory regions available for loading the boot monitor and the component programs of
MINIX 3 will depend upon the hardware. Also, some architectures may require adjustment of
internal addresses within executable code to correct them for the actual address where a program
is loaded. The segmented architecture of Intel processors makes this unnecessary.

Details of the loading process differ with machine type. The important thing is that by one means
or another the operating system is loaded into memory. Following this, a small amount of
preparation is required before MINIX 3 can be started. First, while loading the image, boot reads
a few bytes from the image that tell boot some of its properties, most importantly whether it was
compiled to run in 16-bit or 32-bit mode. Then some additional information needed to start the
system is made available to the kernel. The a.out headers of the components of the MINIX 3
image are extracted into an array within boot's memory space, and the base address of this array
is passed to the kernel. MINIX 3 can return control to the boot monitor when it terminates, so the
location where execution should resume in the monitor is also passed on. These items are passed
on the stack, as we shall see later.

Several other pieces of information, the boot parameters, must be communicated from the boot
monitor to the operating system. Some are needed by the kernel and some are not needed but
are passed along for information, for instance, the name of the boot image that was loaded.
These items can all be represented as string=value pairs, and the address of a table of these
pairs is passed on the stack. Fig. 2-37 shows a typical set of boot parameters as displayed by the
sysenv command from the MINIX 3 command line.



Figure 2-37. Boot parameters passed to the kernel at boot time in a
typical MINIX 3 system.

(This item is displayed on page 160 in the print version)

r oot dev=904

ram magedev=904
ranmsi ze=0
processor =686
bus=at

vi deo=vga

chr one=col or
nmenor y=800: 92540, 100000: 3DF0000
| abel =AT
controller=c0

i mage=boot /i mage

In this example, an important item we will see again soon is the memory parameter; in this case
it indicates that the boot monitor has determined that there are two segments of memory
available for MINIX 3 to use. One begins at hexadecimal address 800 (decimal 2048) and has a
size of hexadecimal 0x92540 (decimal 599,360) bytes; the other begins at 100000 (1,048,576)
and contains 0x3dfO00000 (64,946,176) bytes. This is typical of all but the most elderly PC-
compatible computers. The design of the original IBM PC placed read-only memory at the top of
the usable range of memory, which is limited to 1 MB on an 8088 CPU. Modern PC-compatible
machines always have more memory than the original PC, but for compatibility they still have
read-only memory at the same addresses as the older machines. Thus, the read-write memory is
discontinuous, with a block of ROM between the lower 640 KB and the upper range above 1 MB.
The boot monitor loads the kernel into the low memory range and the servers, drivers, and init
into the memory range above the ROM if possible. This is primarily for the benefit of the file
system, so a large block cache can be used without bumping into the read-only memory.
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We should also mention here that operating systems are not universally loaded from local disks.
Diskless workstations may load their operating systems from a remote disk, over a network
connection. This requires network software in ROM, of course. Although details vary from what we
have described here, the elements of the process are likely to be similar. The ROM code must be
just smart enough to get an executable file over the net that can then obtain the complete
operating system. If MINIX 3 were loaded this way, very little would need to be changed in the
initialization process that occurs once the operating system code is loaded into memory. It would,
of course, need a network server and a modified file system that could access files via the
network.

2.6.7. System Initialization

Earlier versions of MINIX could be compiled in 16-bit mode if compatibility with older processor
chips were required, and MINIX 3 retains some source code for 16-bit mode. However, the
version described here and distributed on the CD-ROM is usable only on 32-bit machines with
80386 or better processors. It does not work in 16-bit mode, and creation of a 16-bit version may
require removing some features. Among other things, 32-bit binaries are larger than 16-bit ones,



and independent user-space drivers cannot share code the way it could be done when drivers
were compiled into a single binary. Nevertheless, a common base of C source code is used and
the compiler generates the appropriate output depending upon whether the compiler itself is the
16-bit or 32-bit version of the compiler. A macro defined by the compiler itself determines the
definition of the _ WORD_SIZE macro in the file include/minix/sys_config.h.
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The first part of MINIX 3 to execute is written in assembly language, and different source code
files must be used for the 16-bit or 32-bit compiler. The 32-bit version of the initialization code is
in mMpx386.s. The alternative, for 16-bit systems, is in mpx88.s. Both of these also include
assembly language support for other low-level kernel operations. The selection is made
automatically in mpx.s. This file is so short that the entire file can be presented in Fig. 2-38.

Figure 2-38. How alternative assembly language source files are
selected.

#i ncl ude <m ni x/ config. h>
#if _WORD S| ZE ==

#i ncl ude "npx88.s"

#el se

#i ncl ude "npx386.s"

#endi f

Mpx.s shows an unusual use of the C preprocessor #i ncl ude statement. Customarily the #i ncl ude
preprocessor directive is used to include header files, but it can also be used to select an alternate
section of source code. Using #i f statements to do this would require putting all the code in both
of the large files mpx88.s and mpx386.s into a single file. Not only would this be unwieldy; it
would also be wasteful of disk space, since in a particular installation it is likely that one or the
other of these two files will not be used at all and can be archived or deleted. In the following
discussion we will use the 32-bit mpx386.s.

Since this is almost our first look at executable code, let us start with a few words about how we
will do this throughout the book. The multiple source files used in compiling a large C program can
be hard to follow. In general, we will keep discussions confined to a single file at a time. The order
of inclusion of the files in Appendix B is the order in which we discuss them in the text. We will
start with the entry point for each part of the MINIX 3 system, and we will follow the main line of
execution. When a call to a supporting function is encountered, we will say a few words about the
purpose of the call, but normally we will not go into a detailed description of the internals of the
function at that point, leaving that until we arrive at the definition of the called function.
Important subordinate functions are usually defined in the same file in which they are called,
following the higher-level calling functions, but small or general-purpose functions are sometimes
collected in separate files. We do not attempt to discuss the internals of every function, and files
that contain such functions may not be listed in Appendix B.

To facilitate portability to other platforms, separate files are frequently used for machine-
dependent and machine-independent code. To make code easier to understand and reduce the
overall size of the listings, most conditional code for platforms other than Intel 32-bit systems has
been stripped from the printed files in Appendix B. Complete versions of all files are in the source
directories on the CD-ROM and are also available on the MINIX 3 Web site.
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A substantial amount of effort has been made to make the code readable by humans. But a large
program has many branches, and sometimes understanding a main function requires reading the
functions it calls, so having a few slips of paper to use as bookmarks and deviating from our order
of discussion to look at things in a different order may be helpful at times.

Having laid out our intended way of organizing the discussion of the code, we start by an
exception. Startup of MINIX 3 involves several transfers of control between the assembly
language routines in mpx386.s and C language routines in the files start.c and main.c. We will
describe these routines in the order that they are executed, even though that involves jumping
from one file to another.

Once the bootstrap process has loaded the operating system into memory, control is transferred
to the label MINIX (in mpx386.s, line 6420). The first instruction is a jJump over a few bytes of
data; this includes the boot monitor flags (line 6423) mentioned earlier. At this point the flags
have already served their purpose; they were read by the monitor when it loaded the kernel into
memory. They are located here because it is an easily specified address. They are used by the
boot monitor to identify various characteristics of the kernel, most importantly, whether it is a 16-
bit or 32-bit system. The boot monitor always starts in 16-bit mode, but switches the CPU to 32-
bit mode if necessary. This happens before control passes to the label MINIX.

Understanding the state of the stack at this point will help make sense of the following code. The
monitor passes several parameters to MINIX 3, by putting them on the stack. First the monitor
pushes the address of the variable aout, which holds the address of an array of the header
information of the component programs of the boot image. Next it pushes the size and then the
address of the boot parameters. These are all 32-bit quantities. Next come the monitor's code
segment address and the location to return to within the monitor when MINIX 3 terminates.
These are both 16-bit quantities, since the monitor operates in 16-bit protected mode. The first
few instructions in mpx386.s convert the 16-bit stack pointer used by the monitor into a 32-bit
value for use in protected mode. Then the instruction

mov ebp, esp

(line 6436) copies the stack pointer value to the ebp register, so it can be used with offsets to
retrieve from the stack the values placed there by the monitor, as is done at lines 6464 to 6467.
Note that because the stack grows downward with Intel processors, 8(ebp) refers to a value
pushed subsequent to pushing the value located at 12( ebp) .

The assembly language code must do a substantial amount of work, setting up a stack frame to
provide the proper environment for code compiled by the C compiler, copying tables used by the
processor to define memory segments, and setting up various processor registers. As soon as this
work is complete, the initialization process continues by calling (at line 6481) the C function cstart
(in start.c, which we will consider next). Note that it is referred to as _cstart in the assembly
language code. This is because all functions compiled by the C compiler have an underscore
prepended to their names in the symbol tables, and the linker looks for such names when
separately compiled modules are linked. Since the assembler does not add underscores, the
writer of an assembly language program must explicitly add one in order for the linker to be able
to find a corresponding name in the object file compiled by the C compiler.
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Cstart calls another routine to initialize the Global Descriptor Table, the central data structure
used by Intel 32-bit processors to oversee memory protection, and the Interrupt Descriptor



Table, used to select the code to be executed for each possible interrupt type. Upon returning
from cstart the | gdt and | i dt instructions (lines 6487 and 6488) make these tables effective by
loading the dedicated registers by which they are addressed. The instruction

j mpf CS_SELECTOR csinit

looks at first glance like a no-operation, since it transfers control to exactly where control would
be if there were a series of nop instructions in its place. But this is an important part of the
initialization process. This jump forces use of the structures just initialized. After some more
manipulation of the processor registers, MINIX terminates with a jump (not a call) at line 6503 to
the kernel's main entry point (in main.c). At this point the initialization code in mpx386.s is
complete. The rest of the file contains code to start or restart a task or process, interrupt
handlers, and other support routines that had to be written in assembly language for efficiency.
We will return to these in the next section.

We will now look at the top-level C initialization functions. The general strategy is to do as much
as possible using high-level C code. As we have seen, there are already two versions of the mpx
code. One chunk of C code can eliminate two chunks of assembler code. Almost the first thing
done by cstart (in start.c, line 6920) is to set up the CPU's protection mechanisms and the
interrupt tables, by calling prot_init. Then it copies the boot parameters to the kernel's memory,
and it scans them, using the function get_value (line 6997) to search for parameter names and
return corresponding value strings. This process determines the type of video display, processor
type, bus type, and, if in 16-bit mode, the processor operating mode (real or protected). All this
information is stored in global variables, for access when needed by any part of the kernel code.

Main (in main.c, line 7130), completes initialization and then starts normal execution of the
system. It configures the interrupt control hardware by calling intr_init. This is done here because
it cannot be done until the machine type is known. (Because intr_init is very dependent upon the
hardware the procedure is in a separate file which we will describe later.) The parameter (1) in
the call tells intr_init that it is initializing for MINIX 3. With a parameter (0) it can be called to
reinitialize the hardware to the original state when MINIX 3 terminates and returns control to the
boot monitor. Intr_init ensures that any interrupts that occur before initialization is complete have
no effect. How this is done will be described later.
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The largest part of main's code is devoted to setup of the process table and the privilege table, so
that when the first tasks and processes are scheduled, their memory maps, registers, and
privilege information will be set correctly. All slots in the process table are marked as free and the
pproc_addr array that speeds access to the process table is initialized by the loop on lines 7150 to
7154. The loop on lines 7155 to 7159 clears the privilege table and the ppriv_addr array similarly
to the process table and its access array. For both the process and privilege tables, putting a
specific value in one field is adequate to mark the slot as not in use. But for each table every slot,
whether in use or not, needs to be initialized with an index number.

An aside on a minor characteristic of the C language: the code on line 7153

(pproc_addr + NR TASKS)[i] = rp;

could just as well have been written as

pproc_addr[i + NR_TASKS] = rp;



In the C language a [i] is just another way of writing *(a+i). So it does not make much difference
if you add a constant to a or to i. Some C compilers generate slightly better code if you add a
constant to the array instead of the index. Whether it really makes a difference here, we cannot
say.

Now we come to the long loop on lines 7172 to 7242, which initializes the process table with the
necessary information to run all of the processes in the boot image. (Note that there is another
outdated comment on line 7161 which mentions only tasks and servers.) All of these processes
must be present at startup time and none of them will terminate during normal operation. At the
start of the loop, ip is assigned the address of an entry in the image table created in table.c (line
7173). Since ip is a pointer to a structure, the elements of the structure can be accessed using
notation like ip>proc_nr, as is done on line 7174. This notation is used extensively in the MINIX 3
source code. In a similar way, rp is a pointer to a slot of the process table, and priv(rp) points to
a slot of the privilege table. Much of the initialization of the process and privilege tables in the long
loop consists of reading a value from the image table and storing it in the process table or the
privilege table.

On line 7185 a test is made for processes that are part of the kernel, and if this is true the special
STACK_GUARD pattern is stored in the base of the task's stack area. This can be checked later on
to be sure the stack has not overflowed. Then the initial stack pointer for each task is set up. Each
task needs its own private stack pointer. Since the stack grows toward lower addresses in
memory, the initial stack pointer is calculated by adding the size of the task's stack to the current
base address (lines 7190 and 7191). There is one exception: the KERNEL process (also identified
as HARDWARE in some places) is never considered ready, never runs as an ordinary process, and
thus has no need of a stack pointer.
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The binaries of boot image components are compiled like any other MINIX 3 programs, and the
compiler creates a header, as defined in include/a.out.h, at the beginning of each of the files. The
boot loader copies each of these headers into its own memory space before MINIX 3 starts, and
when the monitor transfers control to the MINIX: entry point in mpx386.s the physical address of
the header area is passed to the assembly code in the stack, as we have seen. At line 7202, one
of these headers is copied to a local exec structure, ehdr, using hdrindex as the index into the
array of headers. Then the data and text segment addresses are converted to clicks and entered
into the memory map for this process (lines 7205 to 7214).

Before continuing, we should mention a few points. First, for kernel processes hdrindex is always
assigned a value of zero at line 7178. These processes are all compiled into the same file as the
kernel, and the information about their stack requirements is in the image table. Since a task
compiled into the kernel can call code and access data located anywhere in the kernel's space, the
size of an individual task is not meaningful. Thus the same element of the array at aout is
accessed for the kernel and for each task, and the size fields for a task is filled with the sizes for
the kernel itself. The tasks get their stack information from the image table, initialized during
compilation of table.c. After all kernel processes have been processed, hdrindex is incremented on
each pass through the loop (line 7196), so all the user-space system processes get the proper
data from their own headers.

Another point to mention here is that functions that copy data are not necessarily consistent in
the order in which the source and destination are specified. In reading this loop, beware of
potential confusion. The arguments to strncpy, a function from the standard C library, are ordered
such that the destination comes first: strncpy(to, from count). This is analogous to an
assignment operation, in which the left hand side specifies the variable being assigned to and the
right hand side is the expression specifying the value to be assigned. This function is used at line
7179 to copy a process hame into each process table slot for debugging and other purposes. In
contrast, the phys copy function uses an opposite convention, phys_copy(from to, quantity).



Phys_copy is used at line 7202 to copy program headers of user-space processes.

Continuing our discussion of the initialization of the process table, at lines 7220 and 7221 the
initial value of the program counter and the processor status word are set. The processor status
word for the tasks is different from that for device drivers and servers, because tasks have a
higher privilege level that allows them to access 1/0 ports. Following this, if the process is a user-
space one, its stack pointer is initialized.

One entry in the process table does not need to be (and cannot be) scheduled. The HARDWARE
process exists only for bookkeeping purposesit is credited with the time used while servicing an
interrupt. All other processes are put on the appropriate queues by the code in lines 7234 and
7235. The function called lock_enqueue disables interrupts before modifying the queues and then
reenables them when the queue has been modified. This is not required at this point when
nothing is running yet, but it is the standard method, and there is no point in creating extra code
to be used just once.
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The last step in initializing each slot in the process table is to call the function alloc_segments at
line 7241. This machine-dependent routine sets into the proper fields the locations, sizes, and
permission levels for the memory segments used by each process. For older Intel processors that
do not support protected mode, it defines only the segment locations. It would have to be
rewritten to handle a processor type with a different method of allocating memory.

Once the process table has been initialized for all the tasks, the servers, and init, the system is
almost ready to roll. The variable bill_ptr tells which process gets billed for processor time; it
needs to have an initial value set at line 7250, and IDLE is clearly an appropriate choice. Now the
kernel is ready to begin its normal work of controlling and scheduling the execution of processes,
as illustrated in Fig. 2-2.

Not all of the other parts of the system are ready for normal operation yet, but all of these other
parts run as independent processes and have been marked ready and queued to run. They will
initialize themselves when they run. All that is left is for the kernel to call announce to announce it
is ready and then to call restart (lines 7251 and 7252). In many C programs main is a loop, but in
the MINIX 3 kernel its job is done once the initialization is complete. The call to restart on line
7252 starts the first queued process. Control never returns to main.

_Restart is an assembly language routine in mpx386.s. In fact, _restart is not a complete
function; it is an intermediate entry point in a larger procedure. We will discuss it in detail in the
next section; for now we will just say that _restart causes a context switch, so the process
pointed to by proc_ptr will run. When _restart has executed for the first time we can say that
MINIX 3 is runningit is executing a process. _Restart is executed again and again as tasks,
servers, and user processes are given their opportunities to run and then are suspended, either to
wait for input or to give other processes their turns.

Of course, the first time _restart is executed, initialization is only complete for the kernel. Recall
that there are three parts to the MINIX 3 process table. You might ask how can any processes run
when major parts of the process table have not been set up yet. The full answer to this will be
seen in later chapters. The short answer is that the instruction pointers of all processes in the
boot image initially point to initialization code for each process, and all will block fairly soon.
Eventually, the process manager and the file system will get to run their initialization code, and
their parts of the process table will be completed. Eventually init will fork off a getty process for
each terminal. These processes will block until input is typed at some terminal, at which point the
first user can log in.
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We have now traced the startup of MINIX 3 through three files, two written in C and one in
assembly language. The assembly language file, mpx386.s, contains additional code used in
handling interrupts, which we will look at in the next section. However, before we go on let us
wrap up with a brief description of the remaining routines in the two C files. The remaining
functionin start.c is get_value (line 6997). It is used to find entries in the kernel environment,
which is a copy of the boot parameters. It is a simplified version of a standard library function
which is rewritten here in order to keep the kernel simple.

There are three additional procedures in main.c. Announce displays a copyright notice and tells
whether MINIX 3 is running in real mode or 16-bit or 32-bit protected mode, like this:

M N X 3.1 Copyright 2006 Vrije Universiteit, Ansterdam The Netherl ands
Executing in 32-bit protected node

When you see this message you know initialization of the kernel is complete. Prepare_shutdown
(line 7272) signals all system processes with a SIGKSTOP signal (system processes cannot be
signaled in the same way as user processes). Then it sets a timer to allow all the system process
time to clean up before it calls the final procedure here, shutdown. Shutdown will normally return
control to the MINIX 3 boot monitor. To do so the interrupt controllers are restored to the BIOS
settings by the intr_init(0) call on line 7338.

2.6.8. Interrupt Handling in MINIX

Details of interrupt hardware are system dependent, but any system must have elements
functionally equivalent to those to be described for systems with 32-bit Intel CPUs. Interrupts
generated by hardware devices are electrical signals and are handled in the first place by an
interrupt controller, an integrated circuit that can sense a number of such signals and for each
one generate a unique data pattern on the processor's data bus. This is necessary because the
processor itself has only one input for sensing all these devices, and thus cannot differentiate
which device needs service. PCs using Intel 32-bit processors are normally equipped with two
such controller chips. Each can handle eight inputs, but one is a slave which feeds its output to
one of the inputs of the master, so fifteen distinct external devices can be sensed by the
combination, as shown in Fig. 2-39. Some of the fifteen inputs are dedicated; the clock input, IRQ
0, for instance, does not have a connection to any socket into which a new adapter can be
plugged. Others are connected to sockets and can be used for whatever device is plugged in.

Figure 2-39. Interrupt processing hardware on a 32-bit Intel PC.

(This item is displayed on page 168 in the print version)

[View full size image]




In the figure, interrupt signals arrive on the various IRQ n lines shown at the right. The
connection to the CPU's INT pin tells the processor that an interrupt has occurred. The INTA
(interrupt acknowledge) signal from the CPU causes the controller responsible for the interrupt to
put data on the system data bus telling the processor which service routine to execute. The
interrupt controller chips are programmed during system initialization, when main calls intr_init.
The programming determines the output sent to the CPU for a signal received on each of the
input lines, as well as various other parameters of the controller's operation. The data put on the
bus is an 8-bit number, used to index into a table of up to 256 elements. The MINIX 3 table has
56 elements. Of these, 35 are actually used; the others are reserved for use with future Intel
processors or for future enhancements to MINIX 3. On 32-bit Intel processors this table contains
interrupt gate descriptors, each of which is an 8-byte structure with several fields.
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Several modes of response to interrupts are possible; in the one used by MINIX 3, the fields of
most concern to us in each of the interrupt gate descriptors point to the service routine's
executable code segment and the starting address within it. The CPU executes the code pointed
to by the selected descriptor. The result is exactly the same as execution of an

int <nnn>

assembly language instruction. The only difference is that in the case of a hardware interrupt the
<nnn> originates from a register in the interrupt controller chip, rather than from an instruction in
program memory.

The task-switching mechanism of a 32-bit Intel processor that is called into play in response to an
interrupt is complex, and changing the program counter to execute another function is only a part
of it. When the CPU receives an interrupt while running a process it sets up a new stack for use
during the interrupt service. The location of this stack is determined by an entry in the Task
State Segment (TSS). One such structure exists for the entire system, initialized by cstart's call
to prot_init, and modified as each process is started. The effect is that the new stack created by
an interrupt always starts at the end of the stackframe_s structure within the process table entry
of the interrupted process. The CPU automatically pushes several key registers onto this new



stack, including those necessary to reinstate the interrupted process' own stack and restore its
program counter. When the interrupt handler code starts running, it uses this area in the process
table as its stack, and much of the information needed to return to the interrupted process will
have already been stored. The interrupt handler pushes the contents of additional registers, filling
the stackframe, and then switches to a stack provided by the kernel while it does whatever must
be done to service the interrupt.
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Termination of an interrupt service routine is done by switching the stack from the kernel stack
back to a stackframe in the process table (but not necessarily the same one that was created by
the last interrupt), explicitly popping the additional registers, and executing an i retd (return from
interrupt) instruction. | r et d restores the state that existed before an interrupt, restoring the
registers that were pushed by the hardware and switching back to a stack that was in use before
an interrupt. Thus an interrupt stops a process, and completion of the interrupt service restarts a
process, possibly a different one from the one that was most recently stopped. Unlike the simpler
interrupt mechanisms that are the usual subject of assembly language programming texts,
nothing is stored on the interrupted process' working stack when a user process is interrupted.
Furthermore, because the stack is created anew in a known location (determined by the TSS)
after an interrupt, control of multiple processes is simplified. To start a different process all that is
necessary is to point the stack pointer to the stackframe of another process, pop the registers
that were explicitly pushed, and execute an i r et d instruction.

The CPU disables all interrupts when it receives an interrupt. This guarantees that nothing can
occur to cause the stackframe within a process table entry to overflow. This is automatic, but
assembly-level instructions exist to disable and enable interrupts, as well. Interrupts remain
disabled while the kernel stack, located outside the process table, is in use. A mechanism exists to
allow an exception handler (a response to an error detected by the CPU) to run when the kernel
stack is in use. An exception is similar to an interrupt and exceptions cannot be disabled. Thus,
for the sake of exceptions there must be a way to deal with what are essentially nested
interrupts. In this case a new stack is not created. Instead, the CPU pushes the essential registers
needed for resumption of the interrupted code onto the existing stack. An exception is not
supposed to occur while the kernel is running, however, and will result in a panic.

When aniretd is encountered while executing kernel code, a the return mechanism is simpler
than the one used when a user process is interrupted. The processor can determine how to
handle the i r et d by examining the code segment selector that is popped from the stack as part of
the i retd's action.
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The privilege levels mentioned earlier control the different responses to interrupts received while a
process is running and while kernel code (including interrupt service routines) is executing. The
simpler mechanism is used when the privilege level of the interrupted code is the same as the
privilege level of the code to be executed in response to the interrupt. The usual case, however, is
that the interrupted code is less privileged than the interrupt service code, and in this case the
more elaborate mechanism, using the TSS and a new stack, is employed. The privilege level of a
code segment is recorded in the code segment selector, and as this is one of the items stacked
during an interrupt, it can be examined upon return from the interrupt to determine what the

i retd instruction must do.

Another service is provided by the hardware when a new stack is created to use while servicing
an interrupt. The hardware checks to make sure the new stack is big enough for at least the
minimum quantity of information that must be placed on it. This protects the more privileged



kernel code from being accidentally (or maliciously) crashed by a user process making a system
call with an inadequate stack. These mechanisms are built into the processor specifically for use in
the implementation of operating systems that support multiple processes.

This behavior may be confusing if you are unfamiliar with the internal working of 32-bit Intel
CPUs. Ordinarily we try to avoid describing such details, but understanding what happens when
an interrupt occurs and when an i r et d instruction is executed is essential to understanding how
the kernel controls the transitions to and from the "running” state of Fig. 2-2. The fact that the
hardware handles much of the work makes life much easier for the programmer, and presumably
makes the resulting system more efficient. All this help from the hardware does, however, make
it hard to understand what is happening just by reading the software.

Having now described the interrupt mechanism, we will return to mpx386.s and look at the tiny
part of the MINIX 3 kernel that actually sees hardware interrupts. An entry point exists for each
interrupt. The source code at each entry point, _hwint00 to _hwint07, (lines 6531 to 6560) looks
like a call to hwint_master (line 6515), and the entry points _hwint08 to _hwintl15 (lines 6583 to
6612) look like calls to hwint_slave (line 6566). Each entry point appears to pass a parameter in
the call, indicating which device needs service. In fact, these are really not calls, but macros, and
eight separate copies of the code defined by the macro definition of hwint_master are assembled,
with only the irq parameter different. Similarly, eight copies of the hwint_slave macro are
assembled. This may seem extravagant, but assembled code is very compact. The object code for
each expanded macro occupies fewer than 40 bytes. In servicing an interrupt, speed is important,
and doing it this way eliminates the overhead of executing code to load a parameter, call a
subroutine, and retrieve the parameter.

We will continue the discussion of hwint_master as if it really were a single function, rather than a
macro that is expanded in eight different places. Recall that before hwint_master begins to
execute, the CPU has created a new stack in the stackframe_s of the interrupted process, within
its process table slot. Several key registers have already been saved there, and all interrupts are
disabled. The first action of hwint_master is to call save (line 6516). This subroutine pushes all the
other registers necessary to restart the interrupted process. Save could have been written inline
as part of the macro to increase speed, but this would have more than doubled the size of the
macro, and in any case save is needed for calls by other functions. As we shall see, save plays
tricks with the stack. Upon returning to hwint_master, the kernel stack, not a stackframe in the
process table, is in use.
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Two tables declared in glo.h are now used. _Irg_handlers contains the hook information, including
addresses of handler routines. The number of the interrupt being serviced is converted to an
address within _irg_handlers. This address is then pushed onto the stack as the argument to
_intr_handle, and _intr_handle is called, We will look at the code of _intr_handle later. For the
moment, we will just say that not only does it call the service routine for the interrupt that was
called, it sets or resets a flag in the _irq_actids array to indicate whether this attempt to service
the interrupt succeeded, and it gives other entries on the queue another chance to run and be
removed from the list. Depending upon exactly what was required of the handler, the IRQ may or
may not be available to receive another interrupt upon the return from the call to _intr_handle.
This is determined by checking the corresponding entry in _irq_actids.

A nonzero value in _irg_actids shows that interrupt service for this IRQ is not complete. If so, the
interrupt controller is manipulated to prevent it from responding to another interrupt from the
same IRQ line. (lines 6722 to 6724). This operation masks the ability of the controller chip to
respond to a particular input; the CPU's ability to respond to all interrupts is inhibited internally
when it first receives the interrupt signal and has not yet been restored at this point.

A few words about the assembly language code used may be helpful to readers unfamiliar with



assembly language programming. The instruction

jz Of

on line 6521 does not specify a number of bytes to jump over. The 0f is not a hexadecimal
number, nor is it a normal label. Ordinary label names are not permitted to begin with numeric
characters. This is the way the MINIX 3 assembler specifies a local label; the 0f means a jump
forward to the next numeric label 0, on line 6525. The byte written on line 6526 allows the
interrupt controller to resume normal operation, possibly with the line for the current interrupt
disabled.

An interesting and possibly confusing point is that the 0: label on line 6525 occurs elsewhere in
the same file, on line 6576 in hwint_slave. The situation is even more complicated than it looks at
first glance since these labels are within macros and the macros are expanded before the
assembler sees this code. Thus there are actually sixteen O: labels in the code seen by the
assembler. The possible proliferation of labels declared within macros is the reason why the
assembly language provides local labels; when resolving a local label, the assembler uses the
nearest one that matches in the specified direction, and additional occurrences of a local label are
ignored.
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_Intr_handle is hardware dependent, and details of its code will be discussed when we get to the
file i8259.c. However, a few word about how it functions are in order now. _Intr_handle scans a
linked list of structures that hold, among other things, addresses of functions to be called to
handle an interrupt for a device, and the process numbers of the device drivers. It is a linked list
because a single IRQ line may be shared with several devices. The handler for each device is
supposed to test whether its device actually needs service. Of course, this step is not necessary
for an IRQ such as the clock interrupt, IRQ O, which is hard wired to the chip that generates clock
signals with no possibility of any other device triggering this IRQ.

The handler code is intended to be written so it can return quickly. If there is no work to be done
or the interrupt service is completed immediately, the handler returns TRUE. A handler may
perform an operation like reading data from an input device and transferring the data to a buffer
where it can be accessed when the corresponding driver has its next chance to run. The handler
may then cause a message to be sent to its device driver, which in turn causes the device driver
to be scheduled to run as a normal process. If the work is not complete, the handler returns
FALSE. An element of the _irg_act_ids array is a bitmap that records the results for all the
handlers on the list in such a way that the result will be zero if and only if every one of the
handlers returned TRUE. If that is not the case, the code on lines 6522 to 6524 disables the IRQ
before the interrupt controller as a whole is reenabled on line 6536.

This mechanism ensures that none of the handlers on the chain belonging to an IRQ will be
activated until all of the device drivers to which these handlers belong have completed their work.
Obviously, there needs to be another way to reenable an IRQ. That is provided in a function
enable_irg which we will see later. Suffice it to say, each device driver must be sure that
enable_irq is called when its work is done. It also is obvious that enable_irq first should reset its
own bit in the element of _irg_act_ids that corresponds to the IRQ of the driver, and then should
test whether all bits have been reset. Only then should the IRQ be reenabled on the interrupt
controller chip.

What we have just described applies in its simplest form only to the clock driver, because the
clock is the only interrupt-driven device that is compiled into the kernel binary. The address of an
interrupt handler in another process is not meaningful in the context of the kernel, and the
enable_irg function in the kernel cannot be called by a separate process in its own memory space.



For user-space device drivers, which means all device drivers that respond to hardware-initiated
interrupts except for the clock driver, the address of a common handler, generic_handler, is
stored in the linked list of hooks. The source code for this function is in the system task files, but
since the system task is compiled together with the kernel and since this code is executed in
response to an interrupt it cannot really be considered part of the system task. The other
information in each element of the list of hooks includes the process number of the associated
device driver. When generic_handler is called it sends a message to the correct device driver
which causes the specific handler functions of the driver to run. The system task supports the
other end of the chain of events described above as well. When a user-space device driver
completes its work it makes a sys_i rqct| kernel call, which causes the system task to call
enable_irg on behalf of that driver to prepare for the next interrupt.
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Returning our attention to hwint_master, note that it terminates with a r et instruction (line
6527). It is not obvious that something tricky happens here. If a process has been interrupted,
the stack in use at this point is the kernel stack, and not the stack within a process table that was
set up by the hardware before hwint_master was started. In this case, manipulation of the stack
by save will have left the address of _restart on the kernel stack. This results in a task, driver,
server, Or user process once again executing. It may not be, and in fact very likely is not, the
same process as was executing when the interrupt occurred. This depends upon whether the
processing of the message created by the device-specific interrupt service routine caused a
change in the process scheduling queues. In the case of a hardware interrupt this will almost
always be the case. Interrupt handlers usually result in messages to device drivers, and device
drivers generally are queued on higher priority queues than user processes. This, then, is the
heart of the mechanism which creates the illusion of multiple processes executing simultaneously.

To be complete, let us mention that if an interrupt could occur while kernel code were executing,
the kernel stack would already be in use, and save would leave the address of restartl on the
kernel stack. In this case, whatever the kernel was doing previously would continue after the ret
at the end of hwint_master. This is a description of handling of nested interrupts, and these are
not allowed to occur in MINIX 3 interrupts are not enabled while kernel code is running. However,
as mentioned previously, the mechanism is necessary in order to handle exceptions. When all the
kernel routines involved in responding to an exception are complete_restart will finally execute. In
response to an exception while executing kernel code it will almost certainly be true that a
process different from the one that was interrupted last will be put into execution. The response
to an exception in the kernel is a panic, and what happens will be an attempt to shut down the
system with as little damage as possible.

Hwint_slave (line 6566) is similar to hwint_master, except that it must reenable both the master
and slave controllers, since both of them are disabled by receipt of an interrupt by the slave.

Now let us move on to look at save (line 6622), which we have already mentioned. Its name
describes one of its functions, which is to save the context of the interrupted process on the stack
provided by the CPU, which is a stackframe within the process table. Save uses the variable
_k_reenter to count and determine the level of nesting of interrupts. If a process was executing
when the current interrupt occurred, the
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nmov esp, k_stktop

instruction on line 6635 switches to the kernel stack, and the following instruction pushes the
address of _restart. If an interrupt could occur while the kernel stack were already in use the



address of restartl would be pushed instead (line 6642). Of course, an interrupt is not allowed
here, but the mechanism is here to handle exceptions. In either case, with a possibly different
stack in use from the one that was in effect upon entry, and with the return address in the routine
that called it buried beneath the registers that have just been pushed, an ordinary return
instruction is not adequate for returning to the caller. The

j mp RETADR- P_STACKBASE( eax)

instructions that terminate the two exit points of save, at line 6638 and line 6643 use the address
that was pushed when save was called.

Reentrancy in the kernel causes many problems, and eliminating it resulted in simplification of
code in several places. In MINIX 3 the _k_reenter variable still has a purposealthough ordinary
interrupts cannot occur while kernel code is executing exceptions are still possible. For now, the
thing to keep in mind is that the jump on line 6634 will never occur in normal operation. It s,
however, necessary for dealing with exceptions.

As an aside, we must admit that the elimination of reentrancy is a case where programming got
ahead of documentation in the development of MINIX 3. In some ways documentation is harder
than programmingthe compiler or the program will eventually reveal errors in a program. There is
no such mechanism to correct comments in source code. There is a rather long comment at the
start of mpx386.s which is, unfortunately, incorrect. The part of the comment on lines 6310 to
6315 should say that a kernel reentry can occur only when an exception is detected.

The next procedure in mpx386.s is _s_call, which begins on line 6649. Before looking at its
internal details, look at how it ends. It does not end with aret or j np instruction. In fact,
execution continues at _restart (line 6681). _S_call is the system call counterpart of the
interrupt-handling mechanism. Control arrives at _s_call following a software interrupt, that is,
execution of an i nt <nnn> instruction. Software interrupts are treated like hardware interrupts,
except of course the index into the Interrupt Descriptor Table is encoded into the nnn part of an
i nt <nnn> instruction, rather than being supplied by an interrupt controller chip. Thus, when
_s_call is entered, the CPU has already switched to a stack inside the process table (supplied by
the Task State Segment), and several registers have already been pushed onto this stack. By
falling through to _restart, the call to _s_call ultimately terminates with an i ret d instruction, and,
just as with a hardware interrupt, this instruction will start whatever process is pointed to by
proc_ptr at that point. Figure 2-40 compares the handling of a hardware interrupt and a system
call using the software interrupt mechanism.
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Figure 2-40. (a) How a hardware interrupt is processed. (b) How a
system call is made.
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Let us now look at some details of _s_call. The alternate label, _p_s_call, is a vestige of the 16-bit
version of MINIX 3, which has separate routines for protected mode and real mode operation. In
the 32-bit version all calls to either label end up here. A programmer invoking a MINIX 3 system
call writes a function call in C that looks like any other function call, whether to a locally defined
function or to a routine in the C library. The library code supporting a system call sets up a
message, loads the address of the message and the process id of the destination into CPU
registers, and then invokes an i nt SYS386_VECTOR instruction. As described above, the result is
that control passes to the start of _s_call, and several registers have already been pushed onto a
stack inside the process table. All interrupts are disabled, too, as with a hardware interrupt.

The first part of the _s_call code resembles an inline expansion of save and saves the additional
registers that must be preserved. Just as in save, a

mov esp, k_stktop

instruction then switches to the kernel stack. (The similarity of a software interrupt to a hardware
interrupt extends to both disabling all interrupts). Following this comes a call to _sys_call (line
6672), which we will discuss in the next section. For now we just say that it causes a message to
be delivered, and that this in turn causes the scheduler to run. Thus, when _sys_call returns, it is
probable that proc_ptr will be pointing to a different process from the one that initiated the
system call. Then execution falls through to restart.
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We have seen that _restart (line 6681) is reached in several ways:

1. By a call from main when the system starts.
2. By a jump from hwint_master or hwint_slave after a hardware interrupt.
3. By falling through from _s_call after a system call.

Fig. 2-41 is a simplified summary of how control passes back and forth between processes and
the kernel via restart.



Figure 2-41. Restart is the common point reached after system
startup, interrupts, or system calls. The most deserving process
(which may be and often is a different process from the last one
interrupted) runs next. Not shown in this diagram are interrupts that
occur while the kernel itself is running.
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In every case interrupts are disabled when _restart is reached. By line 6690 the next process to
run has been definitively chosen, and with interrupts disabled it cannot be changed. The process
table was carefully constructed so it begins with a stack frame, and the instruction on this line,

mov esp, (_proc_ptr)

points the CPU's stack pointer register at the stack frame. The

I1dt P_LDT_SEL(esp)

instruction then loads the processor's local descriptor table register from the stack frame. This
prepares the processor to use the memory segments belonging to the next process to be run. The
following instruction sets the address in the next process' process table entry to that where the
stack for the next interrupt will be set up, and the following instruction stores this address into the
TSS.
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The first part of _restart would not be necessary if an interrupt occured when kernel code



(including interrupt service code) were executing, since the kernel stack would be in use and
termination of the interrupt service would allow the kernel code to continue. But, in fact, the
kernel is not reentrant in MINIX 3, and ordinary interrupts cannot occur this way. However,
disabling interrupts does not disable the ability of the processor to detect exceptions. The label
restartl (line 6694) marks the point where execution resumes if an exception occurs while
executing kernel code (something we hope will never happen). At this point k_reenter is
decremented to record that one level of possibly nested interrupts has been disposed of, and the
remaining instructions restore the processor to the state it was in when the next process
executed last. The penultimate instruction modifies the stack pointer so the return address that
was pushed when save was called is ignored. If the last interrupt occurred when a process was
executing, the final instruction, i ret d, completes the return to execution of whatever process is
being allowed to run next, restoring its remaining registers, including its stack segment and stack
pointer. If, however, this encounter with the i ret d came via restartl, the kernel stack in use is
not a stackframe, but the kernel stack, and this is not a return to an interrupted process, but the
completion of handling an exception that occurred while kernel code was executing. The CPU
detects this when the code segment descriptor is popped from the stack during execution of the

i retd, and the complete action of the iretd in this case is to retain the kernel stack in use.

Now it is time to say something more about exceptions. An exception is caused by various error
conditions internal to the CPU. Exceptions are not always bad. They can be used to stimulate the
operating system to provide a service, such as providing more memory for a process to use, or
swapping in a currently swapped-out memory page, although such services are not implemented
in MINIX 3. They also can be caused by programming errors. Within the kernel an exception is
very serious, and grounds to panic. When an exception occurs in a user program the program
may need to be terminated, but the operating system should be able to continue. Exceptions are
handled by the same mechanism as interrupts, using descriptors in the interrupt descriptor table.
These entries in the table point to the sixteen exception handler entry points, beginning with
_divide_error and ending with _copr_error, found near the end of mpx386.s, on lines 6707 to
6769. These all jump to exception (line 6774) or errexception (line 6785) depending upon
whether the condition pushes an error code onto the stack or not. The handling here in the
assembly code is similar to what we have already seen, registers are pushed and the C routine
_exception (note the underscore) is called to handle the event. The consequences of exceptions
vary. Some are ignored, some cause panics, and some result in sending signals to processes. We
will examine _exception in a later section.
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One other entry point is handled like an interrupt: _levelO_call (line 6714). It is used when code
must be run with privilege level 0, the most privileged level. The entry point is here in mpx386.s
with the interrupt and exception entry points because it too is invoked by execution of an i nt
<nnn> instruction. Like the exception routines, it calls save, and thus the code that is jumped to
eventually will terminate with a ret that leads to _restart. Its usage will be described in a later
section, when we encounter some code that needs privileges normally not available, even to the
kernel.

Finally, some data storage space is reserved at the end of the assembly language file. Two
different data segments are defined here. The

.sect .rom

declaration at line 6822 ensures that this storage space is allocated at the very beginning of the
kernel's data segment and that it is the start of a read-only section of memory. The compiler puts
a magic number here so boot can verify that the file it loads is a valid kernel image. When
compiling the complete system various string constants will be stored following this. The other



data storage area defined at the

.sect .Dbss

(line 6825) declaration reserves space in the kernel's normal uninitialized variable area for the
kernel stack, and above that some space is reserved for variables used by the exception handlers.
Servers and ordinary processes have stack space reserved when an executable file is linked and
depend upon the kernel to properly set the stack segment descriptor and the stack pointer when
they are executed. The kernel has to do this for itself.

2.6.9. Interprocess Communication in MINIX 3

Processes in MINIX 3 communicate by messages, using the rendezvous principle. When a process
does a send, the lowest layer of the kernel checks to see if the destination is waiting for a
message from the sender (or from ANY sender). If so, the message is copied from the sender's
buffer to the receiver's buffer, and both processes are marked as runnable. If the destination is
not waiting for a message from the sender, the sender is marked as blocked and put onto a
queue of processes waiting to send to the receiver.

When a process does a recei ve, the kernel checks to see if any process is queued trying to send
to it. If so, the message is copied from the blocked sender to the receiver, and both are marked
as runnable. If no process is queued trying to send to it, the receiver blocks until a message
arrives.

In MINIX 3, with components of the operating system running as totally separate processes,
sometimes the rendezvous method is not quite good enough. The noti fy primitive is provided for
precisely these occasions. A noti fy sends a bare-bones message. The sender is not blocked if the
destination is not waiting for a message. The notify is not lost, however. The next time the
destination does a r ecei ve pending notifications are delivered before ordinary messages.
Notifications can be used in situations where using ordinary messages could cause deadlocks.
Earlier we pointed out that a situation where process A blocks sending a message to process B
and process B blocks sending a message to process A must be avoided. But if one of the
messages is a nonblocking notification there is no problem.
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In most cases a notification informs the recipient of its origin, and little more. Sometimes that is
all that is needed, but there are two special cases where a notification conveys some additional
information. In any case, the destination process can send a message to the source of the
notification to request more information.

The high-level code for interprocess communication is found in proc.c. The kernel's job is to
translate either a hardware interrupt or a software interrupt into a message. The former are
generated by hardware and the latter are the way a request for system services, that is, a system
call, is communicated to the kernel. These cases are similar enough that they could have been
handled by a single function, but it was more efficient to create specialized functions.

One comment and two macro definitions near the beginning of this file deserve mention. For
manipulating lists, pointers to pointers are used extensively, and a comment on lines 7420 to
7436 explains their advantages and use. Two useful macros are defined. BuildMess (lines 7458 to
7471), although its name implies more generality, is used only for constructing the messages
used by noti fy. The only function call is to get_uptime, which reads a variable maintained by the
clock task so the notification can include a time-stamp. The apparent calls to a function named



priv are expansions of another macro, defined in priv.h,

#define priv(rp) ((rp)->p_priv)

The other macro, CopyMess, is a programmer-friendly interface to the assembly language routine
cp_mess in klib386.s.

More should be said about BuildMess. The priv macro is used for two special cases. If the origin of
a notification is HARDWARE, it carries a payload, a copy of the destination process' bitmap of
pending interrupts. If the origin is SYSTEM, the payload is the bitmap of pending signals. Because
these bitmaps are available in the priv table slot of the destination process, they can be accessed
at any time. Notifications can be delivered later if the destination process is not blocked waiting
for them at the time they are sent. For ordinary messages this would require some kind of buffer
in which an undelivered message could be stored. To store a notification all that is required is a
bitmap in which each bit corresponds to a process that can send a notification. When a notification
cannot be sent the bit corresponding to the sender is set in the recipient's bitmap. When a

recei ve is done the bitmap is checked and if a bit is found to have been set the message is
regenerated. The bit tells the origin of the message, and if the origin is HARDWARE or SYSTEM,
the additional content is added. The only other item needed is the timestamp, which is added
when the message is regenerated. For the purposes for which they are used, timestamps do not
need to show when a notification was first attempted, the time of delivery is sufficient.
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The first function in proc.c is sys_call (line 7480). It converts a software interrupt (the i nt
SYS386_VECTOR instruction by which a system call is initiated) into a message. There are a wide
range of possible sources and destinations, and the call may require either sending or receiving or
both sending and receiving a message. A number of tests must be made. On lines 7480 and 7481
the function code SEND), RECEIVE, etc.,) and the flags are extracted from the first argument of
the call. The first test is to see if the calling process is allowed to make the call. Iskerneln, used
on line 7501, is a macro defined in proc.h (line 5584). The next test is to see that the specified
source or destination is a valid process. Then a check is made that the message pointer points to
a valid area of memory. MINIX 3 privileges define which other processes any given process is
allowed to send to, and this is tested next (lines 7537 to 7541). Finally, a test is made to verify
that the destination process is running and has not initiated a shutdown (lines 7543 to 7547).
After all the tests have been passed one of the functions mini_send, mini_receive, or mini_notify
is called to do the real work. If the function was ECHO the CopyMess macro is used, with identical
source and destination. ECHO is meant only for testing, as mentioned earlier.

The errors tested for in sys_call are unlikely, but the tests are easily done, as ultimately they
compile into code to perform comparisons of small integers. At this most basic level of the
operating system testing for even the most unlikely errors is advisable. This code is likely to be
executed many times each second during every second that the computer system on which it
runs is active.

The functions mini_send, mini_rec, and mini_notify are the heart of the normal-message passing
mechanism of MINIX 3 and deserve careful study.

Mini_send (line 7591) has three parameters: the caller, the process to be sent to, and a pointer
to the buffer where the message is. After all the tests performed by sys_call, only one more is
necessary, which is to detect a send deadlock. The test on lines 7606 to 7610 verifies that the
caller and destination are not trying to send to each other. The key test in mini_send is on lines
7615 and 7616. Here a check is made to see if the destination is blocked on a r ecei ve, as shown
by the RECEIVING bit in the p_rts_flags field of its process table entry. If it is waiting, then the
next question is: "Who is it waiting for?" If it is waiting for the sender, or for ANY, the CopyMess



macro is used to copy the message and the receiver is unblocked by resetting its RECEIVING bit.
Then enqueue is called to give the receiver an opportunity to run (line 7620).

If, on the other hand, the receiver is not blocked, or is blocked but waiting for a message from
someone else, the code on lines 7623 to 7632 is executed to block and dequeue the sender. All
processes wanting to send to a given destination are strung together on a linked list, with the
destination's p_callerq field pointing to the process table entry of the process at the head of the
queue. The example of Fig. 2-42(a) shows what happens when process 3 is unable to send to
process 0. If process 4 is subsequently also unable to send to process 0, we get the situation of

Fig. 2-42(b).
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Figure 2-42. Queueing of processes trying to send to process O.
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Mini_receive (line 7642) is called by sys_call when its function parameter is RECEIVE or BOTH. As
we mentioned earlier, notifications have a higher priority than ordinary messages. However, a
notification will never be the right reply to a send, so the bitmaps are checked to see if there are
pending notifications only if the SENDREC_BUSY flag is not set. If a notification is found it is
marked as no longer pending and delivered (lines 7670 to 7685). Delivery uses both the
BuildMess and CopyMess macros defined near the top of proc.c.

One might have thought that, because a timestamp is part of a noti fy message, it would convey
useful information, for instance, if the recipient had been unable to do a r ecei ve for a while the
timestamp would tell how long it had been undelivered. But the notification message is generated
(and timestamped) at the time it is delivered, not at the time it was sent. There is a purpose
behind constructing the notification messages at the time of delivery, however. The code is
unnecessary to save notification messages that cannot be delivered immediately. All that is
necessary is to set a bit to remember that a notification should be generated when delivery
becomes possible. You cannot get more economical storage than that: one bit per pending
notification.

It is also the case that the current time is usually what is needed. For instance, notification is used
to deliver a SYN_ALARM message to the process manager, and if the timestamp were not
generated when the message was delivered the PM would need to ask the kernel for the correct
time before checking its timer queue.

Note that only one notification is delivered at a time, mini_send returns on line 7684 after



delivery of a notification. But the caller is not blocked, so it is free to do another recei ve
immediately after getting the notification. If there are no notifications, the caller queues are
checked to see if a message of any other type is pending (lines 7690 to 7699. If such a message
is found it is delivered by the CopyMess macro and the originator of the message is then
unblocked by the call to enqueue on line 7694. The caller is not blocked in this case.
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If no notifications or other messages were available, the caller will be blocked by the call to
dequeue on line 7708.

Mini_notify (line 7719) is used to effectuate a notification. It is similar to mini_send, and can be
discussed quickly. If the recipient of a message is blocked and waiting to receive, the notification
is generated by BuildMess and delivered. The recipient's RECEIVING flag is turned off and it is
then enqueue-ed (lines 7738 to 7743). If the recipient is not waiting a bit is set in its
s_notify_pending map, which indicates that a notification is pending and identifies the sender. The
sender then continues its own work, and if another notification to the same recipient is needed
before an earlier one has been received, the bit in the recipient's bitmap is overwritteneffectively,
multiple notifications from the same sender are merged into a single notification message. This
design eliminates the need for buffer management while offering asynchronous message passing.

When mini_notify is called because of a software interrupt and a subsequent call to sys_call,
interrupts will be disabled at the time. But the clock or system task, or some other task that
might be added to MINIX 3 in the future might need to send a notification at a time when
interrupts are not disabled. Lock_notify (line 7758) is a safe gateway to mini_notify. It checks
k_reenter to see if interrupts are already disabled, and if they are, it just calls mini_notify right
away. If interrupts are enabled they are disabled by a call to lock, mini_notify is called, and then
interrupts are reenabled by a call to unlock.

2.6.10. Scheduling in MINIX 3

MINIX 3 uses a multilevel scheduling algorithm. Processes are given initial priorities that are
related to the structure shown in Fig. 2-29, but there are more layers and the priority of a process
may change during its execution. The clock and system tasks in layer 1 of Fig. 2-29 receive the
highest priority. The device drivers of layer 2 get lower priority, but they are not all equal. Server
processes in layer 3 get lower priorities than drivers, but some less than others. User processes
start with less priority than any of the system processes, and initially are all equal, but the nice
command can raise or lower the priority of a user process.

The scheduler maintains 16 queues of runnable processes, although not all of them may be used
at a particular moment. Fig. 2-43 shows the queues and the processes that are in place at the
instant the kernel completes initialization and begins to run, that is, at the call to restart at line
7252 in main.c. The array rdy_head has one entry for each queue, with that entry pointing to the
process at the head of the queue. Similarly, rdy_tail is an array whose entries point to the last
process on each queue. Both of these arrays are defined with the EXTERN macro in proc.h (lines
5595 and 5596). The initial queueing of processes during system startup is determined by the
image table in table.c (lines 6095 to 6109).
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Figure 2-43. The scheduler maintains sixteen queues, one per priority



level. Shown here is the initial queuing of processes as MINIX 3 starts

up.
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Scheduling is round robin in each queue. If a running process uses up its quantum it is moved to
the tail of its queue and given a new quantum. However, when a blocked process is awakened, it
is put at the head of its queue if it had any part of its quantum left when it blocked. It is not given
a complete new quantum, however; it gets only what it had left when it blocked. The existence of
the array rdy_tail makes adding a process to the end of a queue efficient. Whenever a running
process becomes blocked, or a runnable process is killed by a signal, that process is removed
from the scheduler's queues. Only runnable processes are queued.

Given the queue structures just described, the scheduling algorithm is simple: find the highest
priority queue that is not empty and pick the process at the head of that queue. The IDLE process
is always ready, and is in the lowest priority queue. If all the higher priority queues are empty,
IDLE is run.

We saw a number of references to enqueue and dequeue in the last section. Now let us look at
them. Enqueue is called with a pointer to a process table entry as its argument (line 7787). It
calls another function, sched, with pointers to variables that determine which queue the process
should be on and whether it is to be added to the head or the tail of that queue. Now there are
three possibilities. These are classic data structures examples. If the chosen queue is empty, both
rdy _head and rdy_tail are made to point to the process being added, and the link field,
p_nextready, gets the special pointer value that indicates nothing follows, NIL_PROC. If the
process is being added to the head of a queue, its p_nextready gets the current value of
rdy_head, and then rdy_head is pointed to the new process. If the process is being added to the
tail of a queue, the p_nextready of the current occupant of the tail is pointed to the new process,
as is rdy_tail. The p_nextready of the newly-ready process then is pointed to NIL_PROC. Finally,
pick_proc is called to determine which process will run next.
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When a process must be made unready dequeue line 7823 is called. A process-must be running in
order to block, so the process to be removed is likely to be at the head of its queue. However, a
signal could have been sent to a process that was not running. So the queue is traversed to find
the victim, with a high likelihood it will be found at the head. When it is found all pointers are
adjusted appropriately to take it out of the chain. If it was running, pick_proc must also be called.

One other point of interest is found in this function. Because tasks that run in the kernel share a
common hardware-defined stack area, it is a good idea to check the integrity of their stack areas
occasionally. At the beginning of dequeue a test is made to see if the process being removed from
the queue is one that operates in kernel space. If it is, a check is made to see that the distinctive
pattern written at the end of its stack area has not been overwritten (lines 7835 to 7838).

Now we come to sched, which picks which queue to put a newly-ready process-on, and whether
to put it on the head or the tail of that queue. Recorded in the process table for each process are
its quantum, the time left on its quantum, its priority, and the maximum priority it is allowed. On
lines 7880 to 7885 a check is made to see if the entire quantum was used. If not, it will be
restarted with whatever it had left from its last turn. If the quantum was used up, then a check is
made to see if the process had two turns in a row, with no other process having run. This is taken
as a sign of a possible infinite, or at least, excessively long, loop, and a penalty of +1 is assigned.
However, if the entire quantum was used but other processes have had a chance to run, the
penalty value becomes 1. Of course, this does not help if two or more processes are executing in
a loop together. How to detect that is an open problem.

Next the queue to use is determined. Queue O is highest priority; queue 15 is lowest. One could
argue it should be the other way around, but this way is consistent with the traditional "nice"
values used by UNIX, where a positive "nice" means a process runs with lower priority. Kernel
processes (the clock and system tasks) are immune, but all other processes may have their
priority reduced, that is, be moved to a higher-numbered queue, by adding a positive penalty. All
processes start with their maximum priority, so a negative penalty does not change anything until
positive penalties have been assigned. There is also a lower bound on priority, ordinary processes
never can be put on the same queue as IDLE.

Now we come to pick_proc (line 7910). This function's major job is to set next_ptr. Any change to
the queues that might affect the choice of which process to run next requires pick_proc to be
called again. Whenever the current process blocks, pick_proc is called to reschedule the CPU. In
essence, pick_proc is the scheduler.
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Pick_proc is simple. Each queue is tested. TASK_Q is tested first, and if a process on this queue is
ready, pick_proc sets proc_ptr and returns immediately. Otherwise, the next lower priority queue
is tested, all the way down to IDLE_Q. The pointer bill_ptr is changed to charge the user process

for the CPU time it is about to be given (line 7694). This assures that the last user process to run
is charged for work done on its behalf by the system.

The remaining procedures in proc.c are lock_send, lock_enqueue, and lock_dequeue. These all
provide access to their basic functions using lock and unlock, in the same way we discussed for
lock_notify.

In summary, the scheduling algorithm maintains multiple priority queues. The first process on the
highest priority queue is always run next. The clock task monitors the time used by all processes.
If a user process uses up its quantum, it is put at the end of its queue, thus achieving a simple
round-robin scheduling among the competing user processes. Tasks, drivers, and servers are



expected to run until they block, and are given large quanta, but if they run too long they may
also be preempted. This is not expected to happen very often, but it is a mechanism to prevent a
high-priority process with a problem from locking up the system. A process that prevents other
processes from running may also be moved to a lower priority queue temporarily.

2.6.11. Hardware-Dependent Kernel Support

Several functions written in C are nevertheless hardware specific. To facilitate porting MINIX 3 to
other systems these functions are segregated in the files to be discussed in this section,
exception.c, i8259.c, and protect.c, rather than being included in the same files with the higher-
level code they support.

Exception.c contains the exception handler, exception (line 8012), which is called (as _exception)
by the assembly language part of the exception handling code in mpx386.s. Exceptions that
originate from user processes are converted to signals. Users are expected to make mistakes in
their own programs, but an exception originating in the operating system indicates something is
seriously wrong and causes a panic. The array ex_data (lines 8022 to 8040) determines the error
message to be printed in case of panic, or the signal to be sent to a user process for each
exception. Earlier Intel processors do not generate all the exceptions, and the third field in each
entry indicates the minimum processor model that is capable of generating each one. This array
provides an interesting summary of the evolution of the Intel family of processors upon which
MINIX 3 has been implemented. On line 8065 an alternate message is printed if a panic results
from an interrupt that would not be expected from the processor in use.
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Hardware-Dependent Interrupt Support

The three functions in i8259.c are used during system initialization to initialize the Intel 8259
interrupt controller chips. The macro on line 8119 defines a dummy function (the real one is
needed only when MINIX 3 is compiled for a 16-bit Intel platform). Intr_init (line 8124) initializes
the controllers. Two steps ensure that no interrupts will occur before all the initialization is
complete. First intr_disable is called at line 8134. This is a C language call to an assembly
language function in the library that executes a single instruction, cl i , which disables the CPU's
response to interrupts. Then a sequence of bytes is written to registers on each interrupt
controller, the effect of which is to inhibit response of the controllers to external input. The byte
written at line 8145 is all ones, except for a zero at the bit that controls the cascade input from
the slave controller to the master controller (see Fig. 2-39). A zero enables an input, a one
disables. The byte written to the secondary controller at line 8151 is all ones.

A table stored in the i8259 interrupt controller chip generates an 8-bit index that the CPU uses to
find the correct interrupt gate descriptor for each possible interrupt input (the signals on the
right-hand side of Fig. 2-39). This is initialized by the BIOS when the computer starts up, and
these values can almost all be left in place. As drivers that need interrupts start up, changes can
be made where necessary. Each driver can then request that a bit be reset in the interrupt
controller chip to enable its own interrupt input. The argument mine to intr_init is used to
determine whether MINIX 3 is starting up or shutting down. This function can be used both to
initialize at startup and to restore the BIOS settings when MINIX 3 shuts down.

After initialization of the hardware is complete, the last step in intr_init is to copy the BIOS
interrupt vectors to the MINIX 3 vector table.

The second function in 8259.c is put_irg_handler (line 8162). At initialization put_irg_handler is



called for each process that must respond to an interrupt. This puts the address of the handler
routine into the interrupt table, irq_handlers, defined as EXTERN in glo.h. With modern computers
15 interrupt lines is not always enough (because there may be more than 15 1/0 devices) so two
1/0 devices may need to share an interrupt line. This will not occur with any of the basic devices
supported by MINIX 3 as described in this text, but when network interfaces, sound cards, or
more esoteric 1/0 devices must be supported they may need to share interrupt lines. To allow for
this, the interrupt table is not just a table of addresses. Irq_handlers[NR_IRQ_VECTORS] is an
array of pointers to irg_hook structs, a type defined in kernel/type.h. These structures contain a
field which is a pointer to another structure of the same type, so a linked list can be built, starting
with one of the elements of irg_handlers. Put_irg_handler adds an entry to one of these lists. The
most important element of such an entry is a pointer to an interrupt handler, the function to be
executed when an interrupt is generated, for example, when requested 1/0 has completed.
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Some details of put_irg_handler deserve mention. Note the variable id which is set to 1 just
before the beginning of the whi | e loop that scans through the linked list (lines 8176 to 8180).
Each time through the loop id is shifted left 1 bit. The test on line 8181 limits the length of the
chain to the size of id, or 32 handlers for a 32-bit system. In the normal case the scan will result
in finding the end of the chain, where a new handler can be linked. When this is done, id is also
stored in the field of the same name in the new item on the chain. Put_irg_handler also sets a bit
in the global variable irg_use, to record that a handler exists for this IRQ.

If you fully understand the MINIX 3 design goal of putting device drivers in user-space, the
preceding discussion of how interrupt handlers are called will have left you slightly confused. The
interrupt handler addresses stored in the hook structures cannot be useful unless they point to
functions within the kernel's address space. The only interrupt-driven device in the kernel's
address space is the clock. What about device drivers that have their own address spaces?

The answer is, the system task handles it. Indeed, that is the answer to most questions regarding
communication between the kernel and processes in user-space. A user space device driver that
is to be interrupt driven makes a sys_irqct| call to the system task when it needs to register as
an interrupt handler. The system task then calls put_irg_handler, but instead of the address of an
interrupt handler in the driver's address space, the address of generic_handler, part of the system
task, is stored in the interrupt handler field. The process number field in the hook structure is
used by generic_handler to locate the priv table entry for the driver, and the bit in the driver's
pending interrupts bitmap corresponding to the interrupt is set. Then generic_handler sends a
notification to the driver. The notification is identified as being from HARDWARE, and the pending
interrupts bitmap for the driver is included in the message. Thus, if a driver must respond to
interrupts from more than one source, it can learn which one is responsible for the current
notification. In fact, since the bitmap is sent, one notification provides information on all pending
interrupts for the driver. Another field in the hook structure is a policy field, which determines
whether the interrupt is to be reenabled immediately, or whether it should remain disabled. In the
latter case, it will be up to the driver to make a sys_i r genabl e kernel call when service of the
current interrupt is complete.

One of the goals of MINIX 3 design is to support run-time reconfiguration of 1/0 devices. The next
function, rm_irg_handler, removes a handler, a necessary step if a device driver is to be removed
and possibly replaced by another. Its action is just the opposite of put_irg_handler.

The last function in this file, intr_handle (line 8221), is called from the hwint_master and
hwint_slave macros we saw in mpx386.s. The element of the array of bitmaps irq_actids which
corresponds the interrupt being serviced is used to keep track of the current status of each
handler in a list. For each function in the list, intr_handle sets the corresponding bit in irg_actids,
and calls the handler. If a handler has nothing to do or if it completes its work immediately, it
returns "true"” and the corresponding bit in irq actids is cleared. The entire bitmap for an



interrupt, considered as an integer, is tested near the end of the hwint_master and hwint_slave
macros to determine if that interrupt can be reenabled before another process is restarted.
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Intel Protected Mode Support

Protect.c contains routines related to protected mode operation of Intel processors. The Global
Descriptor Table (GDT), Local Descriptor Tables (LDTs), and the Interrupt Descriptor
Table, all located in memory, provide protected access to system resources. The GDT and IDT
are pointed to by special registers within the CPU, and GDT entries point to LDTs. The GDT is
available to all processes and holds segment descriptors for memory regions used by the
operating system. Normally, there is one LDT for each process, holding segment descriptors for
the memory regions used by the process. Descriptors are 8-byte structures with a number of
components, but the most important parts of a segment descriptor are the fields that describe the
base address and the limit of a memory region. The IDT is also composed of 8-byte descriptors,
with the most important part being the address of the code to be executed when the
corresponding interrupt is activated.

Cstartin start.c calls prot_init (line 8368), which sets up the GDT on lines 8421 to 8438. The IBM
PC BIOS requires that it be ordered in a certain way, and all the indices into it are defined in
protect.h. Space for an LDT for each process is allocated in the process table. Each contains two
descriptors, for a code segment and a data segmentrecall we are discussing here segments as
defined by the hardware; these are not the same as the segments managed by the operating
system, which considers the hardware-defined data segment to be further divided into data and
stack segments. On lines 8444 to 8450 descriptors for each LDT are built in the GDT. The
functions init_dataseg and init_codeseg build these descriptors. The entries in the LDTs
themselves are initialized when a process' memory map is changed (i.e., when an exec system
call is made).

Another processor data structure that needs initialization is the Task State Segment (TSS). The
structure is defined at the start of this file (lines 8325 to 8354) and provides space for storage of
processor registers and other information that must be saved when a task switch is made. MINIX
3 uses only the fields that define where a new stack is to be built when an interrupt occurs. The
call to init_dataseg on line 8460 ensures that it can be located using the GDT.

To understand how MINIX 3 works at the lowest level, perhaps the most important thing is to
understand how exceptions, hardware interrupts, or i nt <nnn> instructions lead to the execution
of the various pieces of code that has been written to service them. These events are processed
by means of the interrupt gate descriptor table. The array gate_table (lines 8383 to 8418), is
initialized by the compiler with the addresses of the routines that handle exceptions and hardware
interrupts and then is used in the loop at lines 8464 to 8468 to initialize this table, using calls to
the int_gate function.
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There are good reasons for the way the data are structured in the descriptors, based on details of
the hardware and the need to maintain compatibility between advanced processors and the 16-bit
286 processor. Fortunately, we can usually leave these details to Intel's processor designers. For
the most part, the C language allows us to avoid the details. However, in implementing a real
operating system the details must be faced at some point. Figure 2-44 shows the internal
structure of one kind of segment descriptor. Note that the base address, which C programs can
refer to as a simple 32-bit unsigned integer, is split into three parts, two of which are separated
by a number of 1-, 2-, and 4-bit quantities. The limit is a 20-bit quantity stored as separate 16-bit



and 4-bit chunks. The limit is interpreted as either a number of bytes or a number of 4096-byte
pages, based on the value of the G (granularity) bit. Other descriptors, such as those used to
specify how interrupts are handled, have different, but equally complex structures. We discuss
these structures in more detail in Chap. 4.

Figure 2-44. The format of an Intel segment descriptor.
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Most of the other functions defined in protect.c are devoted to converting between variables used
in C programs and the rather ugly forms these data take in the machine readable descriptors
such as the one in Fig. 2-44. Init_codeseg (line 8477) and init_dataseg (line 8493) are similar in
operation and are used to convert the parameters passed to them into segment descriptors. They
each, in turn, call the next function, sdesc (line 8508), to complete the job. This is where the
messy details of the structure shown in Fig. 2-44 are dealt with. Init_codeseg and init_data_seg
are not used just at system initialization. They are also called by the system task whenever a new
process is started up, in order to allocate the proper memory segments for the process to use.
Seg2phys (line 8533), called only from start.c, performs an operation which is the inverse of that
of sdesc, extracting the base address of a segment from a segment descriptor. Phys2seg (line
8556), is no longer needed, the sys_segct| kernel call now handles access to remote memory
segments, for instance, memory in the PC's reserved area between 640K and 1M. Int_gate (line
8571) performs a similar function to init_codeseg and init_dataseg in building entries for the
interrupt descriptor table.
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Now we come to a function in protect.c, enable_iop (line 8589), that can perform a dirty trick. It
changes the privilege level for 1/0 operations, allowing the current process to execute instructions
which read and write 1/0 ports. The description of the purpose of the function is more complicated
than the function itself, which just sets two bits in the word in the stack frame entry of the calling
process that will be loaded into the CPU status register when the process is next executed. A
function to undo this is not needed, as it will apply only to the calling process. This function is not
currently used and no method is provided for a user space function to activate it.

The final function in protect.c is alloc_segments (line 8603). It is called by do_newmap. It is also
called by the main routine of the kernel during initialization. This definition is very hardware
dependent. It takes the segment assignments that are recorded in a process table entry and
manipulates the registers and descriptors the Pentium processor uses to support protected
segments at the hardware level. Multiple assignments like those on lines 8629 to 8633 are a
feature of the C language.

2.6.12. Utilities and the Kernel Library



Finally, the kernel has a library of support functions written in assembly language that are
included by compiling klib.s and a few utility programs, written in C, in the file misc.c. Let us first
look at the assembly language files. Klib.s (line 8700) is a short file similar to mpx.s, which selects
the appropriate machine-specific version based upon the definition of WORD_SIZE. The code we
will discuss is in klib386.s (line 8800). This contains about two dozen utility routines that are in
assembly code, either for efficiency or because they cannot be written in C at all.

_Monitor (line 8844) makes it possible to return to the boot monitor. From the point of view of
the boot monitor, all of MINIX 3 is just a subroutine, and when MINIX 3 is started, a return
address to the monitor is left on the monitor's stack. _Monitor just has to restore the various
segment selectors and the stack pointer that was saved when MINIX 3 was started, and then
return as from any other subroutine.

Int86 (line 8864) supports BIOS calls. The BIOS is used to provide alternative-disk drivers which
are not described here. Int86 transfers control to the boot monitor, which manages a transfer
from protected mode to real mode to execute a BIOS call, then back to protected mode for the
return to 32-bit MINIX 3. The boot monitor also returns the number of clock ticks counted during
the BIOS call. How this is used will be seen in the discussion of the clock task.

Although _phys_copy (see below) could have been used for copying messages, _cp_mess (line
8952), a faster specialized procedure, has been provided for that purpose. It is called by

cp_ness(source, src_clicks, src_offset, dest_clicks, dest_offset);
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where so